File size: 15,252 Bytes
01f5167
 
068f4f4
01f5167
0d070e7
01f5167
 
1b1ed3e
 
0d070e7
01f5167
 
 
 
 
 
0d070e7
01f5167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d070e7
d2ef8c4
01f5167
0d070e7
 
 
 
01f5167
 
 
 
1b1ed3e
63fd32a
0dd2adc
 
 
01f5167
0d070e7
 
 
 
 
1b84dcb
0d070e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01f5167
0d070e7
 
01f5167
0d070e7
 
 
 
 
 
 
 
5b24777
0d070e7
1f561dd
0d070e7
 
 
1f561dd
0d070e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f561dd
0d070e7
 
 
 
 
 
 
1f561dd
0d070e7
0dd2adc
0d070e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dd2adc
0d070e7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import nltk
import re
import nltkmodule

from newspaper import Article, fulltext
import requests
import itertools
import os

from nltk.tokenize import word_tokenize, sent_tokenize
from sentence_transformers import SentenceTransformer
import pandas as pd
import numpy as np
from pandas import ExcelWriter
from torch.utils.data import DataLoader
import math
from sentence_transformers import models
from nltk.corpus import stopwords
stop_words = stopwords.words('english')
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.metrics.pairwise import cosine_similarity
import scipy.spatial
import networkx as nx
import scispacy
import spacy
import en_core_sci_lg
import string
from nltk.stem.wordnet import WordNetLemmatizer
import gradio as gr
import inflect
from sklearn.metrics import silhouette_score
from xml.etree import ElementTree as ET

from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

p = inflect.engine()
nlp = en_core_sci_lg.load()
sp = en_core_sci_lg.load()
all_stopwords = sp.Defaults.stop_words

os.environ["TOKENIZERS_PARALLELISM"] = "false"

def remove_stopwords(sen):
    sen_new = " ".join([i for i in sen if i not in stop_words])
    return sen_new

# ------------- Evidence Extraction with NLI Model (Global Model Loading) -------------
NLI_MODEL_NAME = "pritamdeka/PubMedBERT-MNLI-MedNLI"
nli_tokenizer = AutoTokenizer.from_pretrained(NLI_MODEL_NAME)
nli_model = AutoModelForSequenceClassification.from_pretrained(NLI_MODEL_NAME)
NLI_LABELS = ['CONTRADICTION', 'NEUTRAL', 'ENTAILMENT']  # typical MNLI order

def extract_evidence_sentences(claim, abstracts):
    results = []
    for title, abstract in zip(abstracts['Title'], abstracts['Abstract']):
        sentences = sent_tokenize(abstract)
        evidence = []
        for sent in sentences:
            # premise = sent, hypothesis = claim
            encoding = nli_tokenizer(
                sent, claim,
                return_tensors='pt',
                truncation=True,
                max_length=256,
                padding=True
            )
            with torch.no_grad():
                outputs = nli_model(**encoding)
                probs = torch.softmax(outputs.logits, dim=1).cpu().numpy().flatten()
                max_idx = probs.argmax()
                label = NLI_LABELS[max_idx]
                score = float(probs[max_idx])
            evidence.append({
                "sentence": sent,
                "label": label,
                "score": score
            })
        results.append({
            "title": title,
            "evidence": evidence
        })
    return results

def keyphrase_generator(
    article_link, model_1, model_2, max_num_keywords, model_3, max_retrieved, model_4, extract_evidence):

    # ---------- Robust Article Download ----------
    try:
        response = requests.get(article_link, timeout=20)
        response.raise_for_status()
        html = response.text
        article = fulltext(html)
    except Exception as e:
        return {"error": f"Failed to download article: {str(e)}"}

    corpus = sent_tokenize(article)

    # ---------- TextRank + Keyphrase Extraction ----------
    model_1 = SentenceTransformer(model_1)
    model_2 = SentenceTransformer(model_2)

    indicator_list = ['concluded', 'concludes', 'in a study', 'concluding', 'conclude', 'in sum', 'in a recent study',
                      'therefore', 'thus', 'so', 'hence', 'as a result', 'accordingly', 'consequently', 'in short',
                      'proves that', 'shows that', 'suggests that', 'demonstrates that', 'found that', 'observed that',
                      'indicated that', 'suggested that', 'demonstrated that']
    score_list = []
    count_dict = {}
    for l in corpus:
        c = 0
        for l2 in indicator_list:
            if l.find(l2) != -1:
                c = 1
                break
        count_dict[l] = c
    for sent, score in count_dict.items():
        score_list.append(score)
    clean_sentences_new = pd.Series(corpus).str.replace("[^a-zA-Z]", " ", regex=True).tolist()
    corpus_embeddings = model_1.encode(clean_sentences_new)
    sim_mat = np.zeros([len(clean_sentences_new), len(clean_sentences_new)])
    for i in range(len(clean_sentences_new)):
        len_embeddings = len(corpus_embeddings[i])
        for j in range(len(clean_sentences_new)):
            if i != j:
                if len_embeddings == 1024:
                    sim_mat[i][j] = cosine_similarity(corpus_embeddings[i].reshape(1, 1024),
                                                      corpus_embeddings[j].reshape(1, 1024))[0, 0]
                elif len_embeddings == 768:
                    sim_mat[i][j] = cosine_similarity(corpus_embeddings[i].reshape(1, 768),
                                                      corpus_embeddings[j].reshape(1, 768))[0, 0]
    nx_graph = nx.from_numpy_array(sim_mat)
    scores = nx.pagerank(nx_graph, max_iter=1500)
    sentences = ((scores[i], s) for i, s in enumerate(corpus))
    element = [elem[0] for elem in sentences]
    sum_list = [sc + lst for sc, lst in zip(score_list, element)]
    x = sorted(((sum_list[i], s) for i, s in enumerate(corpus)), reverse=True)
    final_textrank_list = [elem[1] for elem in x]
    a = int((10 * len(final_textrank_list)) / 100.0)
    total = max(a, 5)
    document = [final_textrank_list[i] for i in range(total)]
    doc = " ".join(document)
    text_doc = []
    for i in document:
        doc_1 = nlp(i)
        text_doc.append([X.text for X in doc_1.ents])
    entity_list = [item for sublist in text_doc for item in sublist]
    entity_list = [word for word in entity_list if word not in all_stopwords]
    entity_list = [word_entity for word_entity in entity_list if not p.singular_noun(word_entity)]
    entity_list = list(dict.fromkeys(entity_list))
    doc_embedding = model_2.encode([doc])
    candidates = entity_list
    candidate_embeddings = model_2.encode(candidates)
    distances = cosine_similarity(doc_embedding, candidate_embeddings)
    top_n = max_num_keywords
    keyword_list = [candidates[index] for index in distances.argsort()[0][-top_n:]]
    # ---------- Clustering + Query Generation ----------
    word_embedding_model = models.Transformer(model_3)
    pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(),
                                  pooling_mode_mean_tokens=True,
                                  pooling_mode_cls_token=False,
                                  pooling_mode_max_tokens=False)
    embedder = SentenceTransformer(modules=[word_embedding_model, pooling_model])
    c_len = len(keyword_list)
    keyword_embeddings = embedder.encode(keyword_list)
    silhouette_score_list = []
    cluster_list_final = []
    for num_clusters in range(1, top_n):
        clustering_model = KMeans(n_clusters=num_clusters)
        clustering_model.fit(keyword_embeddings)
        cluster_assignment = clustering_model.labels_
        clustered_sentences = [[] for _ in range(num_clusters)]
        for sentence_id, cluster_id in enumerate(cluster_assignment):
            clustered_sentences[cluster_id].append(keyword_list[sentence_id])
        cl_sent_len = len(clustered_sentences)
        list_cluster = list(clustered_sentences)
        cluster_list_final.append(list_cluster)
        if (c_len == cl_sent_len and c_len >= 3) or cl_sent_len == 1:
            silhouette_avg = 0
        elif c_len == cl_sent_len == 2:
            silhouette_avg = 1
        else:
            silhouette_avg = silhouette_score(keyword_embeddings, cluster_assignment)
        silhouette_score_list.append(silhouette_avg)
    res_dict = dict(zip(silhouette_score_list, cluster_list_final))
    cluster_items = res_dict[max(res_dict)]
    comb = []
    for i in cluster_items:
        z = ' OR '.join(i)
        comb.append("(" + z + ")")
    combinations = []
    for subset in itertools.combinations(comb, 2):
        combinations.append(subset)
    f1_list = []
    for s in combinations:
        final = ' AND '.join(s)
        f1_list.append("(" + final + ")")
    f_1 = ' OR '.join(f1_list)
    # ---------- PubMed Abstract Extraction ----------
    ncbi_url = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/'
    last_url = 'esearch.fcgi?db=pubmed' + '&term=' + f_1
    overall_url = ncbi_url + last_url + '&rettype=json' + '&sort=relevance'
    try:
        pubmed_search_request = requests.get(overall_url, timeout=20)
        root = ET.fromstring(pubmed_search_request.text)
        levels = root.findall('.//Id')
        search_id_list = [level.text for level in levels]
        if not search_id_list:
            return {"error": "No PubMed results found."}
    except Exception as e:
        return {"error": f"Error retrieving from PubMed: {str(e)}"}
    all_search_ids = ','.join(search_id_list)
    fetch_url = 'efetch.fcgi?db=pubmed'
    search_id = '&id=' + all_search_ids
    return_url = ncbi_url + fetch_url + search_id + '&rettype=text' + '&retmode=xml' + '&retmax=500' + '&sort=relevance'
    try:
        pubmed_abstract_request = requests.get(return_url, timeout=20)
        root_1 = ET.fromstring(pubmed_abstract_request.text)
        article_title = root_1.findall('.//ArticleTitle')
        titles_list = [a.text for a in article_title]
        article_abstract = root_1.findall('.//AbstractText')
        abstracts_list = [b.text for b in article_abstract]
    except Exception as e:
        return {"error": f"Error extracting PubMed abstracts: {str(e)}"}
    if not titles_list or not abstracts_list:
        return {"error": "No abstracts found for this query."}
    # ---------- Most relevant abstracts by heading ----------
    try:
        first_article = Article(article_link, language='en')
        first_article.download()
        first_article.parse()
        article_heading = first_article.title
        if not article_heading or not isinstance(article_heading, str):
            article_heading = corpus[0] if corpus else ""
    except Exception:
        article_heading = corpus[0] if corpus else ""
    model_4 = SentenceTransformer(model_4)
    my_dict = dict(zip(titles_list, abstracts_list))
    title_embeddings = model_4.encode(titles_list)
    heading_embedding = model_4.encode([article_heading])
    similarities = cosine_similarity(heading_embedding, title_embeddings)
    max_n = max_retrieved
    sorted_titles = [titles_list[index] for index in similarities.argsort()[0][-max_n:]]
    sorted_abstract_list = [my_dict[list_elem] for list_elem in sorted_titles]
    sorted_dict = {'Title': sorted_titles, 'Abstract': sorted_abstract_list}

    # ---------- Evidence Extraction Integration ----------
    if extract_evidence:
        evidence_results = extract_evidence_sentences(
            article_heading,
            sorted_dict,
        )
        return evidence_results
    else:
        return sorted_dict

igen_pubmed = gr.Interface(
    keyphrase_generator,
    inputs=[
        gr.components.Textbox(lines=1, placeholder="Provide article web link here", value="", label="Article web link"),
        gr.components.Dropdown(
            choices=[
                'sentence-transformers/all-mpnet-base-v2',
                'sentence-transformers/all-mpnet-base-v1',
                'sentence-transformers/all-distilroberta-v1',
                'sentence-transformers/gtr-t5-large',
                'pritamdeka/S-Bluebert-snli-multinli-stsb',
                'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
                'pritamdeka/S-BioBert-snli-multinli-stsb',
                'sentence-transformers/stsb-mpnet-base-v2',
                'sentence-transformers/stsb-roberta-base-v2',
                'sentence-transformers/stsb-distilroberta-base-v2',
                'sentence-transformers/sentence-t5-large',
                'sentence-transformers/sentence-t5-base'
            ],
            type="value",
            value='sentence-transformers/stsb-roberta-base-v2',
            label="Select any SBERT model for TextRank"
        ),
        gr.components.Dropdown(
            choices=[
                'sentence-transformers/paraphrase-mpnet-base-v2',
                'sentence-transformers/all-mpnet-base-v1',
                'sentence-transformers/paraphrase-distilroberta-base-v1',
                'sentence-transformers/paraphrase-xlm-r-multilingual-v1',
                'sentence-transformers/paraphrase-multilingual-mpnet-base-v2',
                'sentence-transformers/paraphrase-albert-small-v2',
                'sentence-transformers/paraphrase-albert-base-v2',
                'sentence-transformers/paraphrase-MiniLM-L12-v2',
                'sentence-transformers/paraphrase-MiniLM-L6-v2',
                'sentence-transformers/all-MiniLM-L12-v2',
                'sentence-transformers/all-distilroberta-v1',
                'sentence-transformers/paraphrase-TinyBERT-L6-v2',
                'sentence-transformers/paraphrase-MiniLM-L3-v2',
                'sentence-transformers/all-MiniLM-L6-v2'
            ],
            type="value",
            value='sentence-transformers/all-mpnet-base-v1',
            label="Select any SBERT model for keyphrases"
        ),
        gr.components.Slider(minimum=5, maximum=20, step=1, value=10, label="Max Keywords"),
        gr.components.Dropdown(
            choices=[
                'cambridgeltl/SapBERT-from-PubMedBERT-fulltext',
                'cambridgeltl/SapBERT-from-PubMedBERT-fulltext-mean-token'
            ],
            type="value",
            value='cambridgeltl/SapBERT-from-PubMedBERT-fulltext',
            label="Select any SapBERT model for clustering"
        ),
        gr.components.Slider(minimum=5, maximum=15, step=1, value=10, label="PubMed Max Abstracts"),
        gr.components.Dropdown(
            choices=[
                'pritamdeka/S-Bluebert-snli-multinli-stsb',
                'pritamdeka/S-BioBert-snli-multinli-stsb',
                'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
                'sentence-transformers/all-mpnet-base-v2'
            ],
            type="value",
            value='sentence-transformers/all-mpnet-base-v2',
            label="Select any SBERT model for abstracts"
        ),
        gr.components.Checkbox(label="Enable Evidence Extraction", value=True)
    ],
    outputs=gr.components.JSON(label="Results (Abstracts + Evidence)"),
    title="PubMed Abstract Retriever",
    description="Retrieves relevant PubMed abstracts for an online article and optionally extracts evidence for the claim made in the article headline. Outputs JSON mapping each abstract to evidence sentences and their stance (ENTAILMENT/SUPPORT, CONTRADICTION, NEUTRAL).",
    examples=[
        [
            "https://www.cancer.news/2021-12-22-mrna-vaccines-weaken-immune-system-cause-cancer.html",
            'sentence-transformers/all-mpnet-base-v1',
            'sentence-transformers/paraphrase-MiniLM-L12-v2',
            10,
            'cambridgeltl/SapBERT-from-PubMedBERT-fulltext',
            15,
            'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
            True
        ]
    ]
)

igen_pubmed.launch(share=False, server_name='0.0.0.0', show_error=True)