File size: 15,252 Bytes
01f5167 068f4f4 01f5167 0d070e7 01f5167 1b1ed3e 0d070e7 01f5167 0d070e7 01f5167 0d070e7 d2ef8c4 01f5167 0d070e7 01f5167 1b1ed3e 63fd32a 0dd2adc 01f5167 0d070e7 1b84dcb 0d070e7 01f5167 0d070e7 01f5167 0d070e7 5b24777 0d070e7 1f561dd 0d070e7 1f561dd 0d070e7 1f561dd 0d070e7 1f561dd 0d070e7 0dd2adc 0d070e7 0dd2adc 0d070e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
import nltk
import re
import nltkmodule
from newspaper import Article, fulltext
import requests
import itertools
import os
from nltk.tokenize import word_tokenize, sent_tokenize
from sentence_transformers import SentenceTransformer
import pandas as pd
import numpy as np
from pandas import ExcelWriter
from torch.utils.data import DataLoader
import math
from sentence_transformers import models
from nltk.corpus import stopwords
stop_words = stopwords.words('english')
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.metrics.pairwise import cosine_similarity
import scipy.spatial
import networkx as nx
import scispacy
import spacy
import en_core_sci_lg
import string
from nltk.stem.wordnet import WordNetLemmatizer
import gradio as gr
import inflect
from sklearn.metrics import silhouette_score
from xml.etree import ElementTree as ET
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
p = inflect.engine()
nlp = en_core_sci_lg.load()
sp = en_core_sci_lg.load()
all_stopwords = sp.Defaults.stop_words
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def remove_stopwords(sen):
sen_new = " ".join([i for i in sen if i not in stop_words])
return sen_new
# ------------- Evidence Extraction with NLI Model (Global Model Loading) -------------
NLI_MODEL_NAME = "pritamdeka/PubMedBERT-MNLI-MedNLI"
nli_tokenizer = AutoTokenizer.from_pretrained(NLI_MODEL_NAME)
nli_model = AutoModelForSequenceClassification.from_pretrained(NLI_MODEL_NAME)
NLI_LABELS = ['CONTRADICTION', 'NEUTRAL', 'ENTAILMENT'] # typical MNLI order
def extract_evidence_sentences(claim, abstracts):
results = []
for title, abstract in zip(abstracts['Title'], abstracts['Abstract']):
sentences = sent_tokenize(abstract)
evidence = []
for sent in sentences:
# premise = sent, hypothesis = claim
encoding = nli_tokenizer(
sent, claim,
return_tensors='pt',
truncation=True,
max_length=256,
padding=True
)
with torch.no_grad():
outputs = nli_model(**encoding)
probs = torch.softmax(outputs.logits, dim=1).cpu().numpy().flatten()
max_idx = probs.argmax()
label = NLI_LABELS[max_idx]
score = float(probs[max_idx])
evidence.append({
"sentence": sent,
"label": label,
"score": score
})
results.append({
"title": title,
"evidence": evidence
})
return results
def keyphrase_generator(
article_link, model_1, model_2, max_num_keywords, model_3, max_retrieved, model_4, extract_evidence):
# ---------- Robust Article Download ----------
try:
response = requests.get(article_link, timeout=20)
response.raise_for_status()
html = response.text
article = fulltext(html)
except Exception as e:
return {"error": f"Failed to download article: {str(e)}"}
corpus = sent_tokenize(article)
# ---------- TextRank + Keyphrase Extraction ----------
model_1 = SentenceTransformer(model_1)
model_2 = SentenceTransformer(model_2)
indicator_list = ['concluded', 'concludes', 'in a study', 'concluding', 'conclude', 'in sum', 'in a recent study',
'therefore', 'thus', 'so', 'hence', 'as a result', 'accordingly', 'consequently', 'in short',
'proves that', 'shows that', 'suggests that', 'demonstrates that', 'found that', 'observed that',
'indicated that', 'suggested that', 'demonstrated that']
score_list = []
count_dict = {}
for l in corpus:
c = 0
for l2 in indicator_list:
if l.find(l2) != -1:
c = 1
break
count_dict[l] = c
for sent, score in count_dict.items():
score_list.append(score)
clean_sentences_new = pd.Series(corpus).str.replace("[^a-zA-Z]", " ", regex=True).tolist()
corpus_embeddings = model_1.encode(clean_sentences_new)
sim_mat = np.zeros([len(clean_sentences_new), len(clean_sentences_new)])
for i in range(len(clean_sentences_new)):
len_embeddings = len(corpus_embeddings[i])
for j in range(len(clean_sentences_new)):
if i != j:
if len_embeddings == 1024:
sim_mat[i][j] = cosine_similarity(corpus_embeddings[i].reshape(1, 1024),
corpus_embeddings[j].reshape(1, 1024))[0, 0]
elif len_embeddings == 768:
sim_mat[i][j] = cosine_similarity(corpus_embeddings[i].reshape(1, 768),
corpus_embeddings[j].reshape(1, 768))[0, 0]
nx_graph = nx.from_numpy_array(sim_mat)
scores = nx.pagerank(nx_graph, max_iter=1500)
sentences = ((scores[i], s) for i, s in enumerate(corpus))
element = [elem[0] for elem in sentences]
sum_list = [sc + lst for sc, lst in zip(score_list, element)]
x = sorted(((sum_list[i], s) for i, s in enumerate(corpus)), reverse=True)
final_textrank_list = [elem[1] for elem in x]
a = int((10 * len(final_textrank_list)) / 100.0)
total = max(a, 5)
document = [final_textrank_list[i] for i in range(total)]
doc = " ".join(document)
text_doc = []
for i in document:
doc_1 = nlp(i)
text_doc.append([X.text for X in doc_1.ents])
entity_list = [item for sublist in text_doc for item in sublist]
entity_list = [word for word in entity_list if word not in all_stopwords]
entity_list = [word_entity for word_entity in entity_list if not p.singular_noun(word_entity)]
entity_list = list(dict.fromkeys(entity_list))
doc_embedding = model_2.encode([doc])
candidates = entity_list
candidate_embeddings = model_2.encode(candidates)
distances = cosine_similarity(doc_embedding, candidate_embeddings)
top_n = max_num_keywords
keyword_list = [candidates[index] for index in distances.argsort()[0][-top_n:]]
# ---------- Clustering + Query Generation ----------
word_embedding_model = models.Transformer(model_3)
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(),
pooling_mode_mean_tokens=True,
pooling_mode_cls_token=False,
pooling_mode_max_tokens=False)
embedder = SentenceTransformer(modules=[word_embedding_model, pooling_model])
c_len = len(keyword_list)
keyword_embeddings = embedder.encode(keyword_list)
silhouette_score_list = []
cluster_list_final = []
for num_clusters in range(1, top_n):
clustering_model = KMeans(n_clusters=num_clusters)
clustering_model.fit(keyword_embeddings)
cluster_assignment = clustering_model.labels_
clustered_sentences = [[] for _ in range(num_clusters)]
for sentence_id, cluster_id in enumerate(cluster_assignment):
clustered_sentences[cluster_id].append(keyword_list[sentence_id])
cl_sent_len = len(clustered_sentences)
list_cluster = list(clustered_sentences)
cluster_list_final.append(list_cluster)
if (c_len == cl_sent_len and c_len >= 3) or cl_sent_len == 1:
silhouette_avg = 0
elif c_len == cl_sent_len == 2:
silhouette_avg = 1
else:
silhouette_avg = silhouette_score(keyword_embeddings, cluster_assignment)
silhouette_score_list.append(silhouette_avg)
res_dict = dict(zip(silhouette_score_list, cluster_list_final))
cluster_items = res_dict[max(res_dict)]
comb = []
for i in cluster_items:
z = ' OR '.join(i)
comb.append("(" + z + ")")
combinations = []
for subset in itertools.combinations(comb, 2):
combinations.append(subset)
f1_list = []
for s in combinations:
final = ' AND '.join(s)
f1_list.append("(" + final + ")")
f_1 = ' OR '.join(f1_list)
# ---------- PubMed Abstract Extraction ----------
ncbi_url = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/'
last_url = 'esearch.fcgi?db=pubmed' + '&term=' + f_1
overall_url = ncbi_url + last_url + '&rettype=json' + '&sort=relevance'
try:
pubmed_search_request = requests.get(overall_url, timeout=20)
root = ET.fromstring(pubmed_search_request.text)
levels = root.findall('.//Id')
search_id_list = [level.text for level in levels]
if not search_id_list:
return {"error": "No PubMed results found."}
except Exception as e:
return {"error": f"Error retrieving from PubMed: {str(e)}"}
all_search_ids = ','.join(search_id_list)
fetch_url = 'efetch.fcgi?db=pubmed'
search_id = '&id=' + all_search_ids
return_url = ncbi_url + fetch_url + search_id + '&rettype=text' + '&retmode=xml' + '&retmax=500' + '&sort=relevance'
try:
pubmed_abstract_request = requests.get(return_url, timeout=20)
root_1 = ET.fromstring(pubmed_abstract_request.text)
article_title = root_1.findall('.//ArticleTitle')
titles_list = [a.text for a in article_title]
article_abstract = root_1.findall('.//AbstractText')
abstracts_list = [b.text for b in article_abstract]
except Exception as e:
return {"error": f"Error extracting PubMed abstracts: {str(e)}"}
if not titles_list or not abstracts_list:
return {"error": "No abstracts found for this query."}
# ---------- Most relevant abstracts by heading ----------
try:
first_article = Article(article_link, language='en')
first_article.download()
first_article.parse()
article_heading = first_article.title
if not article_heading or not isinstance(article_heading, str):
article_heading = corpus[0] if corpus else ""
except Exception:
article_heading = corpus[0] if corpus else ""
model_4 = SentenceTransformer(model_4)
my_dict = dict(zip(titles_list, abstracts_list))
title_embeddings = model_4.encode(titles_list)
heading_embedding = model_4.encode([article_heading])
similarities = cosine_similarity(heading_embedding, title_embeddings)
max_n = max_retrieved
sorted_titles = [titles_list[index] for index in similarities.argsort()[0][-max_n:]]
sorted_abstract_list = [my_dict[list_elem] for list_elem in sorted_titles]
sorted_dict = {'Title': sorted_titles, 'Abstract': sorted_abstract_list}
# ---------- Evidence Extraction Integration ----------
if extract_evidence:
evidence_results = extract_evidence_sentences(
article_heading,
sorted_dict,
)
return evidence_results
else:
return sorted_dict
igen_pubmed = gr.Interface(
keyphrase_generator,
inputs=[
gr.components.Textbox(lines=1, placeholder="Provide article web link here", value="", label="Article web link"),
gr.components.Dropdown(
choices=[
'sentence-transformers/all-mpnet-base-v2',
'sentence-transformers/all-mpnet-base-v1',
'sentence-transformers/all-distilroberta-v1',
'sentence-transformers/gtr-t5-large',
'pritamdeka/S-Bluebert-snli-multinli-stsb',
'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
'pritamdeka/S-BioBert-snli-multinli-stsb',
'sentence-transformers/stsb-mpnet-base-v2',
'sentence-transformers/stsb-roberta-base-v2',
'sentence-transformers/stsb-distilroberta-base-v2',
'sentence-transformers/sentence-t5-large',
'sentence-transformers/sentence-t5-base'
],
type="value",
value='sentence-transformers/stsb-roberta-base-v2',
label="Select any SBERT model for TextRank"
),
gr.components.Dropdown(
choices=[
'sentence-transformers/paraphrase-mpnet-base-v2',
'sentence-transformers/all-mpnet-base-v1',
'sentence-transformers/paraphrase-distilroberta-base-v1',
'sentence-transformers/paraphrase-xlm-r-multilingual-v1',
'sentence-transformers/paraphrase-multilingual-mpnet-base-v2',
'sentence-transformers/paraphrase-albert-small-v2',
'sentence-transformers/paraphrase-albert-base-v2',
'sentence-transformers/paraphrase-MiniLM-L12-v2',
'sentence-transformers/paraphrase-MiniLM-L6-v2',
'sentence-transformers/all-MiniLM-L12-v2',
'sentence-transformers/all-distilroberta-v1',
'sentence-transformers/paraphrase-TinyBERT-L6-v2',
'sentence-transformers/paraphrase-MiniLM-L3-v2',
'sentence-transformers/all-MiniLM-L6-v2'
],
type="value",
value='sentence-transformers/all-mpnet-base-v1',
label="Select any SBERT model for keyphrases"
),
gr.components.Slider(minimum=5, maximum=20, step=1, value=10, label="Max Keywords"),
gr.components.Dropdown(
choices=[
'cambridgeltl/SapBERT-from-PubMedBERT-fulltext',
'cambridgeltl/SapBERT-from-PubMedBERT-fulltext-mean-token'
],
type="value",
value='cambridgeltl/SapBERT-from-PubMedBERT-fulltext',
label="Select any SapBERT model for clustering"
),
gr.components.Slider(minimum=5, maximum=15, step=1, value=10, label="PubMed Max Abstracts"),
gr.components.Dropdown(
choices=[
'pritamdeka/S-Bluebert-snli-multinli-stsb',
'pritamdeka/S-BioBert-snli-multinli-stsb',
'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
'sentence-transformers/all-mpnet-base-v2'
],
type="value",
value='sentence-transformers/all-mpnet-base-v2',
label="Select any SBERT model for abstracts"
),
gr.components.Checkbox(label="Enable Evidence Extraction", value=True)
],
outputs=gr.components.JSON(label="Results (Abstracts + Evidence)"),
title="PubMed Abstract Retriever",
description="Retrieves relevant PubMed abstracts for an online article and optionally extracts evidence for the claim made in the article headline. Outputs JSON mapping each abstract to evidence sentences and their stance (ENTAILMENT/SUPPORT, CONTRADICTION, NEUTRAL).",
examples=[
[
"https://www.cancer.news/2021-12-22-mrna-vaccines-weaken-immune-system-cause-cancer.html",
'sentence-transformers/all-mpnet-base-v1',
'sentence-transformers/paraphrase-MiniLM-L12-v2',
10,
'cambridgeltl/SapBERT-from-PubMedBERT-fulltext',
15,
'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
True
]
]
)
igen_pubmed.launch(share=False, server_name='0.0.0.0', show_error=True)
|