pritamdeka commited on
Commit
0d070e7
Β·
verified Β·
1 Parent(s): c9f7c79

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +292 -308
app.py CHANGED
@@ -2,24 +2,19 @@ import nltk
2
  import re
3
  import nltkmodule
4
 
5
- from newspaper import Article
6
- from newspaper import fulltext
7
  import requests
8
  import itertools
9
  import os
10
 
11
-
12
- from nltk.tokenize import word_tokenize
13
  from sentence_transformers import SentenceTransformer
14
  import pandas as pd
15
  import numpy as np
16
  from pandas import ExcelWriter
17
  from torch.utils.data import DataLoader
18
  import math
19
- from sentence_transformers import models, losses
20
- from sentence_transformers import SentencesDataset, LoggingHandler, SentenceTransformer
21
- from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
22
- from sentence_transformers.readers import *
23
  from nltk.corpus import stopwords
24
  stop_words = stopwords.words('english')
25
  import matplotlib.pyplot as plt
@@ -28,7 +23,6 @@ from sklearn.decomposition import PCA
28
  from sklearn.metrics.pairwise import cosine_similarity
29
  import scipy.spatial
30
  import networkx as nx
31
- from nltk.tokenize import sent_tokenize
32
  import scispacy
33
  import spacy
34
  import en_core_sci_lg
@@ -36,13 +30,13 @@ import string
36
  from nltk.stem.wordnet import WordNetLemmatizer
37
  import gradio as gr
38
  import inflect
39
- from sklearn.cluster import KMeans
40
- from sklearn.cluster import AgglomerativeClustering
41
- from sklearn.metrics import silhouette_samples, silhouette_score, davies_bouldin_score
42
- import json
43
  from xml.etree import ElementTree as ET
44
- p = inflect.engine()
45
 
 
 
 
 
46
  nlp = en_core_sci_lg.load()
47
  sp = en_core_sci_lg.load()
48
  all_stopwords = sp.Defaults.stop_words
@@ -53,307 +47,297 @@ def remove_stopwords(sen):
53
  sen_new = " ".join([i for i in sen if i not in stop_words])
54
  return sen_new
55
 
 
 
 
 
 
56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
 
 
 
58
 
59
- def keyphrase_generator(article_link, model_1, model_2, max_num_keywords, model_3, max_retrieved, model_4):
60
-
61
- word_embedding_model = models.Transformer(model_3)
62
- pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(),
63
- pooling_mode_mean_tokens=True,
64
- pooling_mode_cls_token=False,
65
- pooling_mode_max_tokens=False)
 
66
 
67
- embedder = SentenceTransformer(modules=[word_embedding_model, pooling_model])
68
 
69
- element=[]
70
- cluster_list_final=[]
71
- comb_list=[]
72
- comb=[]
73
- title_list=[]
74
- titles_list=[]
75
- abstracts_list=[]
76
- silhouette_score_list=[]
77
- final_textrank_list=[]
78
- document=[]
79
- text_doc=[]
80
- final_list=[]
81
- score_list=[]
82
- sum_list=[]
83
- ############################################## Here we first extract the sentences using SBERT and Textrank ###########################
84
- model_1 = SentenceTransformer(model_1)
85
- model_2 = SentenceTransformer(model_2)
86
- url = article_link
87
- html = requests.get(url).text
88
- article = fulltext(html)
89
- corpus=sent_tokenize(article)
90
- indicator_list=['concluded','concludes','in a study', 'concluding','conclude','in sum','in a recent study','therefore','thus','so','hence',
91
- 'as a result','accordingly','consequently','in short','proves that','shows that','suggests that','demonstrates that','found that','observed that',
92
- 'indicated that','suggested that','demonstrated that']
93
- count_dict={}
94
- for l in corpus:
95
- c=0
96
- for l2 in indicator_list:
97
- if l.find(l2)!=-1:#then it is a substring
98
- c=1
99
- break
100
- if c:#
101
- count_dict[l]=1
102
- else:
103
- count_dict[l]=0
104
- for sent, score in count_dict.items():
105
- score_list.append(score)
106
- clean_sentences_new = pd.Series(corpus).str.replace("[^a-zA-Z]", " ", regex = True).tolist()
107
- corpus_embeddings = model_1.encode(clean_sentences_new)
108
- sim_mat = np.zeros([len(clean_sentences_new), len(clean_sentences_new)])
109
- for i in range(len(clean_sentences_new)):
110
- len_embeddings=(len(corpus_embeddings[i]))
111
- for j in range(len(clean_sentences_new)):
112
- if i != j:
113
- if(len_embeddings == 1024):
114
- sim_mat[i][j] = cosine_similarity(corpus_embeddings[i].reshape(1,1024), corpus_embeddings[j].reshape(1,1024))[0,0]
115
- elif(len_embeddings == 768):
116
- sim_mat[i][j] = cosine_similarity(corpus_embeddings[i].reshape(1,768), corpus_embeddings[j].reshape(1,768))[0,0]
117
- nx_graph = nx.from_numpy_array(sim_mat)
118
- scores = nx.pagerank(nx_graph, max_iter = 1500)
119
- sentences=((scores[i],s) for i,s in enumerate(corpus))
120
- for elem in sentences:
121
- element.append(elem[0])
122
- for sc, lst in zip(score_list, element): ########## taking the scores from both the lists
123
- sum1=sc+lst
124
- sum_list.append(sum1)
125
- x=sorted(((sum_list[i],s) for i,s in enumerate(corpus)), reverse=True)
126
- for elem in x:
127
- final_textrank_list.append(elem[1])
128
-
129
- ################################################################ Textrank ends #################################################
130
-
131
- ######################################################## From here we start the keyphrase extraction process ################################################
132
-
133
- a=int((10*len(final_textrank_list))/100.0)
134
- if(a<5):
135
- total=5
136
- else:
137
- total=int(a)
138
- for i in range(total):
139
- document.append(final_textrank_list[i])
140
- doc=" ".join(document)
141
- for i in document:
142
- doc_1=nlp(i)
143
- text_doc.append([X.text for X in doc_1.ents])
144
- entity_list = [item for sublist in text_doc for item in sublist]
145
- entity_list = [word for word in entity_list if not word in all_stopwords]
146
- entity_list = [word_entity for word_entity in entity_list if(p.singular_noun(word_entity) == False)]
147
- entity_list=list(dict.fromkeys(entity_list))
148
- doc_embedding = model_2.encode([doc])
149
- candidates=entity_list
150
- candidate_embeddings = model_2.encode(candidates)
151
- distances = cosine_similarity(doc_embedding, candidate_embeddings)
152
- top_n = max_num_keywords
153
- keyword_list = [candidates[index] for index in distances.argsort()[0][-top_n:]]
154
- keywords = '\n'.join(keyword_list)
155
-
156
- ############################################################## Keyphrase extraction ends #############################################
157
-
158
-
159
- ################################################################## From here we start the clustering and query generation ##################################
160
 
161
- c_len=(len(keyword_list))
162
- keyword_embeddings = embedder.encode(keyword_list)
163
- data_embeddings = embedder.encode(keyword_list)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
164
 
165
- for num_clusters in range(1, top_n):
166
- clustering_model = KMeans(n_clusters=num_clusters)
167
- clustering_model.fit(keyword_embeddings)
168
- cluster_assignment = clustering_model.labels_
169
- clustered_sentences = [[] for i in range(num_clusters)]
170
- for sentence_id, cluster_id in enumerate(cluster_assignment):
171
- clustered_sentences[cluster_id].append(keyword_list[sentence_id])
172
- cl_sent_len=(len(clustered_sentences))
173
- list_cluster=list(clustered_sentences)
174
- a=len(list_cluster)
175
- cluster_list_final.append(list_cluster)
176
- if (c_len==cl_sent_len and c_len>=3) or cl_sent_len==1:
177
- silhouette_avg = 0
178
- silhouette_score_list.append(silhouette_avg)
179
- elif c_len==cl_sent_len==2:
180
- silhouette_avg = 1
181
- silhouette_score_list.append(silhouette_avg)
182
  else:
183
- silhouette_avg = silhouette_score(keyword_embeddings, cluster_assignment)
184
- silhouette_score_list.append(silhouette_avg)
185
- res_dict = dict(zip(silhouette_score_list, cluster_list_final))
186
- cluster_items=res_dict[max(res_dict)]
187
-
188
- for i in cluster_items:
189
- z=' OR '.join(i)
190
- comb.append("("+z+")")
191
- comb_list.append(comb)
192
- combinations = []
193
- for subset in itertools.combinations(comb, 2):
194
- combinations.append(subset)
195
- f1_list=[]
196
- for s in combinations:
197
- final = ' AND '.join(s)
198
- f1_list.append("("+final+")")
199
- f_1=' OR '.join(f1_list)
200
- final_list.append(f_1)
201
-
202
- ######################################################## query generation ends here #######################################
203
-
204
- ####################################### PubeMed abstract extraction starts here #########################################
205
-
206
- ncbi_url='https://eutils.ncbi.nlm.nih.gov/entrez/eutils/'
207
-
208
- last_url='esearch.fcgi?db=pubmed'+'&term='+f_1
209
- overall_url=ncbi_url+last_url+'&rettype=json'+'&sort=relevance'
210
- pubmed_search_request = requests.get(overall_url)
211
-
212
- root = ET.fromstring(pubmed_search_request.text)
213
- levels = root.findall('.//Id')
214
- search_id_list=[]
215
- for level in levels:
216
- name = level.text
217
- search_id_list.append(name)
218
- all_search_ids = ','.join(search_id_list)
219
- fetch_url='efetch.fcgi?db=pubmed'
220
- search_id='&id='+all_search_ids
221
- return_url=ncbi_url+fetch_url+search_id+'&rettype=text'+'&retmode=xml'+'&retmax=500'+'&sort=relevance'
222
- pubmed_abstract_request = requests.get(return_url)
223
- root_1 = ET.fromstring(pubmed_abstract_request.text)
224
- article_title = root_1.findall('.//ArticleTitle')
225
- for a in article_title:
226
- article_title_name = a.text
227
- titles_list.append(article_title_name)
228
- article_abstract = root_1.findall('.//AbstractText')
229
- for b in article_abstract:
230
- article_abstract_name = b.text
231
- abstracts_list.append(article_abstract_name)
232
-
233
- ################################ PubMed extraction ends here ########################################################
234
-
235
- ########################################## Most relevant abstracts as per news article heading starts here ##########################################
236
-
237
- first_article = Article(url, language='en')
238
- first_article.download()
239
- first_article.parse()
240
- article_heading=(first_article.title)
241
- article_heading=sent_tokenize(article_heading)
242
- model_4 = SentenceTransformer(model_4)
243
-
244
- my_dict = dict(zip(titles_list,abstracts_list))
245
- title_embeddings = model_4.encode(titles_list)
246
- heading_embedding = model_4.encode(article_heading)
247
- similarities = cosine_similarity(heading_embedding, title_embeddings)
248
- max_n = max_retrieved
249
- sorted_titles = [titles_list[index] for index in similarities.argsort()[0][-max_n:]]
250
- sorted_abstract_list=[]
251
- for list_elem in sorted_titles:
252
- sorted_abstract_list.append(my_dict[list_elem])
253
- sorted_dict = {'Title': sorted_titles, 'Abstract': sorted_abstract_list}
254
- df_new=pd.DataFrame(dict([ (k,pd.Series(v)) for k,v in sorted_dict.items() ]))
255
- df_final = df_new.fillna(' ')
256
- #fp = df_final.to_csv('title_abstract.csv', index=False)
257
-
258
-
259
- ############################################# Ends here ###################################################
260
-
261
- #return df_final
262
- #return fp
263
- return sorted_dict
264
-
265
 
266
- igen_pubmed = gr.Interface(keyphrase_generator,
267
- inputs=[gr.components.Textbox(lines=1, placeholder="Provide article web link here (Can be chosen from examples below)",value="", label="Article web link"),
268
- gr.components.Dropdown(choices=['sentence-transformers/all-mpnet-base-v2',
269
- 'sentence-transformers/all-mpnet-base-v1',
270
- 'sentence-transformers/all-distilroberta-v1',
271
- 'sentence-transformers/gtr-t5-large',
272
- 'pritamdeka/S-Bluebert-snli-multinli-stsb',
273
- 'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
274
- 'pritamdeka/S-BioBert-snli-multinli-stsb',
275
- 'sentence-transformers/stsb-mpnet-base-v2',
276
- 'sentence-transformers/stsb-roberta-base-v2',
277
- 'sentence-transformers/stsb-distilroberta-base-v2',
278
- 'sentence-transformers/sentence-t5-large',
279
- 'sentence-transformers/sentence-t5-base'],
280
- type="value",
281
- value='sentence-transformers/stsb-roberta-base-v2',
282
- label="Select any SBERT model for TextRank from the list below"),
283
- gr.components.Dropdown(choices=['sentence-transformers/paraphrase-mpnet-base-v2',
284
- 'sentence-transformers/all-mpnet-base-v1',
285
- 'sentence-transformers/paraphrase-distilroberta-base-v1',
286
- 'sentence-transformers/paraphrase-xlm-r-multilingual-v1',
287
- 'sentence-transformers/paraphrase-multilingual-mpnet-base-v2',
288
- 'sentence-transformers/paraphrase-albert-small-v2',
289
- 'sentence-transformers/paraphrase-albert-base-v2',
290
- 'sentence-transformers/paraphrase-MiniLM-L12-v2',
291
- 'sentence-transformers/paraphrase-MiniLM-L6-v2',
292
- 'sentence-transformers/all-MiniLM-L12-v2',
293
- 'sentence-transformers/all-distilroberta-v1',
294
- 'sentence-transformers/paraphrase-TinyBERT-L6-v2',
295
- 'sentence-transformers/paraphrase-MiniLM-L3-v2',
296
- 'sentence-transformers/all-MiniLM-L6-v2'],
297
- type="value",
298
- value='sentence-transformers/all-mpnet-base-v1',
299
- label="Select any SBERT model for keyphrases from the list below"),
300
- gr.components.Slider(minimum=5, maximum=20, step=1, value=10, label="Max Keywords"),
301
- gr.components.Dropdown(choices=['cambridgeltl/SapBERT-from-PubMedBERT-fulltext',
302
- 'cambridgeltl/SapBERT-from-PubMedBERT-fulltext-mean-token'],
303
- type="value",
304
- value='cambridgeltl/SapBERT-from-PubMedBERT-fulltext',
305
- label="Select any SapBERT model for clustering from the list below"),
306
- gr.components.Slider(minimum=5, maximum=15, step=1, value=10, label="PubMed Max Abstracts"),
307
- gr.components.Dropdown(choices=['pritamdeka/S-Bluebert-snli-multinli-stsb',
308
- 'pritamdeka/S-BioBert-snli-multinli-stsb',
309
- 'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
310
- 'sentence-transformers/all-mpnet-base-v2'],
311
- type="value",
312
- value='sentence-transformers/all-mpnet-base-v2',
313
- label="Select any SBERT model for abstracts from the list below")],
314
- #outputs=gr.outputs.Dataframe(type="auto", label="Retrieved Results from PubMed",max_cols=2, overflow_row_behaviour="paginate"),
315
- outputs=gr.components.JSON(label="Title and Abstracts"),
316
- #outputs=gr.outputs.File(label=None),
317
- title="PubMed Abstract Retriever", description="Retrieves relevant PubMed abstracts for an online article which can be used as further references. The output is in the form of JSON with <b><i>Title</i></b> and <b><i>Abstract</i></b> as the fields of the JSON output. Please note that it may take sometime for the models to load. Examples are provided below for demo purposes. Choose any one example to see the results. The models can be changed to see different results. ",
318
- examples=[
319
- ["https://www.cancer.news/2021-12-22-mrna-vaccines-weaken-immune-system-cause-cancer.html",
320
- 'sentence-transformers/all-mpnet-base-v1',
321
- 'sentence-transformers/paraphrase-MiniLM-L12-v2',
322
- 10,
323
- 'cambridgeltl/SapBERT-from-PubMedBERT-fulltext',
324
- 15,
325
- 'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb'],
326
-
327
- ["https://www.cancer.news/2022-02-04-doctors-testifying-covid-vaccines-causing-cancer-aids.html#",
328
- 'sentence-transformers/all-mpnet-base-v1',
329
- 'sentence-transformers/all-mpnet-base-v1',
330
- 12,
331
- 'cambridgeltl/SapBERT-from-PubMedBERT-fulltext',
332
- 11,
333
- 'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb'],
334
-
335
- ["https://www.medicalnewstoday.com/articles/alzheimers-addressing-sleep-disturbance-may-alleviate-symptoms",
336
- 'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
337
- 'sentence-transformers/all-mpnet-base-v1',
338
- 10,
339
- 'cambridgeltl/SapBERT-from-PubMedBERT-fulltext',
340
- 10,
341
- 'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb'],
342
-
343
- ["https://www.medicalnewstoday.com/articles/omicron-what-do-we-know-about-the-stealth-variant",
344
- 'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
345
- 'sentence-transformers/all-mpnet-base-v1',
346
- 15,
347
- 'cambridgeltl/SapBERT-from-PubMedBERT-fulltext',
348
- 10,
349
- 'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb']
350
- ],
351
- article= "This work is based on the paper <a href=https://dl.acm.org/doi/10.1145/3487664.3487701>provided here</a>."
352
- "\t It uses the TextRank algorithm with SBERT to first find the top sentences and then extracts the keyphrases from those sentences using scispaCy and SBERT."
353
- "\t The application then uses a UMLS based BERT model, <a href=https://arxiv.org/abs/2010.11784>SapBERT</a> to cluster the keyphrases using K-means clustering method and finally create a boolean query. After that the top k titles and abstracts are retrieved from PubMed database and displayed according to relevancy. The SapBERT models can be changed as per the list provided. "
354
- "\t The list of SBERT models required in the textboxes can be found in <a href=www.sbert.net/docs/pretrained_models.html>SBERT Pre-trained models hub</a>."
355
- "\t The model names can be changed from the list of pre-trained models provided. "
356
- "\t The value of keyphrases can be changed. The default value is 10, minimum is 5 and a maximum value of 20. "
357
- "\t The value of maximum abstracts to be retrieved can be changed. The minimum is 5, default is 10 and a maximum of 15.")
358
 
359
- igen_pubmed.launch(share=False,server_name='0.0.0.0',show_error=True)
 
2
  import re
3
  import nltkmodule
4
 
5
+ from newspaper import Article, fulltext
 
6
  import requests
7
  import itertools
8
  import os
9
 
10
+ from nltk.tokenize import word_tokenize, sent_tokenize
 
11
  from sentence_transformers import SentenceTransformer
12
  import pandas as pd
13
  import numpy as np
14
  from pandas import ExcelWriter
15
  from torch.utils.data import DataLoader
16
  import math
17
+ from sentence_transformers import models
 
 
 
18
  from nltk.corpus import stopwords
19
  stop_words = stopwords.words('english')
20
  import matplotlib.pyplot as plt
 
23
  from sklearn.metrics.pairwise import cosine_similarity
24
  import scipy.spatial
25
  import networkx as nx
 
26
  import scispacy
27
  import spacy
28
  import en_core_sci_lg
 
30
  from nltk.stem.wordnet import WordNetLemmatizer
31
  import gradio as gr
32
  import inflect
33
+ from sklearn.metrics import silhouette_score
 
 
 
34
  from xml.etree import ElementTree as ET
 
35
 
36
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
37
+ import torch
38
+
39
+ p = inflect.engine()
40
  nlp = en_core_sci_lg.load()
41
  sp = en_core_sci_lg.load()
42
  all_stopwords = sp.Defaults.stop_words
 
47
  sen_new = " ".join([i for i in sen if i not in stop_words])
48
  return sen_new
49
 
50
+ # ------------- Evidence Extraction with NLI Model (Global Model Loading) -------------
51
+ NLI_MODEL_NAME = "pritamdeka/PubMedBERT-MNLI-MedNLI"
52
+ nli_tokenizer = AutoTokenizer.from_pretrained(NLI_MODEL_NAME)
53
+ nli_model = AutoModelForSequenceClassification.from_pretrained(NLI_MODEL_NAME)
54
+ NLI_LABELS = ['CONTRADICTION', 'NEUTRAL', 'ENTAILMENT'] # typical MNLI order
55
 
56
+ def extract_evidence_sentences(claim, abstracts):
57
+ results = []
58
+ for title, abstract in zip(abstracts['Title'], abstracts['Abstract']):
59
+ sentences = sent_tokenize(abstract)
60
+ evidence = []
61
+ for sent in sentences:
62
+ # premise = sent, hypothesis = claim
63
+ encoding = nli_tokenizer(
64
+ sent, claim,
65
+ return_tensors='pt',
66
+ truncation=True,
67
+ max_length=256,
68
+ padding=True
69
+ )
70
+ with torch.no_grad():
71
+ outputs = nli_model(**encoding)
72
+ probs = torch.softmax(outputs.logits, dim=1).cpu().numpy().flatten()
73
+ max_idx = probs.argmax()
74
+ label = NLI_LABELS[max_idx]
75
+ score = float(probs[max_idx])
76
+ evidence.append({
77
+ "sentence": sent,
78
+ "label": label,
79
+ "score": score
80
+ })
81
+ results.append({
82
+ "title": title,
83
+ "evidence": evidence
84
+ })
85
+ return results
86
 
87
+ def keyphrase_generator(
88
+ article_link, model_1, model_2, max_num_keywords, model_3, max_retrieved, model_4, extract_evidence):
89
 
90
+ # ---------- Robust Article Download ----------
91
+ try:
92
+ response = requests.get(article_link, timeout=20)
93
+ response.raise_for_status()
94
+ html = response.text
95
+ article = fulltext(html)
96
+ except Exception as e:
97
+ return {"error": f"Failed to download article: {str(e)}"}
98
 
99
+ corpus = sent_tokenize(article)
100
 
101
+ # ---------- TextRank + Keyphrase Extraction ----------
102
+ model_1 = SentenceTransformer(model_1)
103
+ model_2 = SentenceTransformer(model_2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104
 
105
+ indicator_list = ['concluded', 'concludes', 'in a study', 'concluding', 'conclude', 'in sum', 'in a recent study',
106
+ 'therefore', 'thus', 'so', 'hence', 'as a result', 'accordingly', 'consequently', 'in short',
107
+ 'proves that', 'shows that', 'suggests that', 'demonstrates that', 'found that', 'observed that',
108
+ 'indicated that', 'suggested that', 'demonstrated that']
109
+ score_list = []
110
+ count_dict = {}
111
+ for l in corpus:
112
+ c = 0
113
+ for l2 in indicator_list:
114
+ if l.find(l2) != -1:
115
+ c = 1
116
+ break
117
+ count_dict[l] = c
118
+ for sent, score in count_dict.items():
119
+ score_list.append(score)
120
+ clean_sentences_new = pd.Series(corpus).str.replace("[^a-zA-Z]", " ", regex=True).tolist()
121
+ corpus_embeddings = model_1.encode(clean_sentences_new)
122
+ sim_mat = np.zeros([len(clean_sentences_new), len(clean_sentences_new)])
123
+ for i in range(len(clean_sentences_new)):
124
+ len_embeddings = len(corpus_embeddings[i])
125
+ for j in range(len(clean_sentences_new)):
126
+ if i != j:
127
+ if len_embeddings == 1024:
128
+ sim_mat[i][j] = cosine_similarity(corpus_embeddings[i].reshape(1, 1024),
129
+ corpus_embeddings[j].reshape(1, 1024))[0, 0]
130
+ elif len_embeddings == 768:
131
+ sim_mat[i][j] = cosine_similarity(corpus_embeddings[i].reshape(1, 768),
132
+ corpus_embeddings[j].reshape(1, 768))[0, 0]
133
+ nx_graph = nx.from_numpy_array(sim_mat)
134
+ scores = nx.pagerank(nx_graph, max_iter=1500)
135
+ sentences = ((scores[i], s) for i, s in enumerate(corpus))
136
+ element = [elem[0] for elem in sentences]
137
+ sum_list = [sc + lst for sc, lst in zip(score_list, element)]
138
+ x = sorted(((sum_list[i], s) for i, s in enumerate(corpus)), reverse=True)
139
+ final_textrank_list = [elem[1] for elem in x]
140
+ a = int((10 * len(final_textrank_list)) / 100.0)
141
+ total = max(a, 5)
142
+ document = [final_textrank_list[i] for i in range(total)]
143
+ doc = " ".join(document)
144
+ text_doc = []
145
+ for i in document:
146
+ doc_1 = nlp(i)
147
+ text_doc.append([X.text for X in doc_1.ents])
148
+ entity_list = [item for sublist in text_doc for item in sublist]
149
+ entity_list = [word for word in entity_list if word not in all_stopwords]
150
+ entity_list = [word_entity for word_entity in entity_list if not p.singular_noun(word_entity)]
151
+ entity_list = list(dict.fromkeys(entity_list))
152
+ doc_embedding = model_2.encode([doc])
153
+ candidates = entity_list
154
+ candidate_embeddings = model_2.encode(candidates)
155
+ distances = cosine_similarity(doc_embedding, candidate_embeddings)
156
+ top_n = max_num_keywords
157
+ keyword_list = [candidates[index] for index in distances.argsort()[0][-top_n:]]
158
+ # ---------- Clustering + Query Generation ----------
159
+ word_embedding_model = models.Transformer(model_3)
160
+ pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(),
161
+ pooling_mode_mean_tokens=True,
162
+ pooling_mode_cls_token=False,
163
+ pooling_mode_max_tokens=False)
164
+ embedder = SentenceTransformer(modules=[word_embedding_model, pooling_model])
165
+ c_len = len(keyword_list)
166
+ keyword_embeddings = embedder.encode(keyword_list)
167
+ silhouette_score_list = []
168
+ cluster_list_final = []
169
+ for num_clusters in range(1, top_n):
170
+ clustering_model = KMeans(n_clusters=num_clusters)
171
+ clustering_model.fit(keyword_embeddings)
172
+ cluster_assignment = clustering_model.labels_
173
+ clustered_sentences = [[] for _ in range(num_clusters)]
174
+ for sentence_id, cluster_id in enumerate(cluster_assignment):
175
+ clustered_sentences[cluster_id].append(keyword_list[sentence_id])
176
+ cl_sent_len = len(clustered_sentences)
177
+ list_cluster = list(clustered_sentences)
178
+ cluster_list_final.append(list_cluster)
179
+ if (c_len == cl_sent_len and c_len >= 3) or cl_sent_len == 1:
180
+ silhouette_avg = 0
181
+ elif c_len == cl_sent_len == 2:
182
+ silhouette_avg = 1
183
+ else:
184
+ silhouette_avg = silhouette_score(keyword_embeddings, cluster_assignment)
185
+ silhouette_score_list.append(silhouette_avg)
186
+ res_dict = dict(zip(silhouette_score_list, cluster_list_final))
187
+ cluster_items = res_dict[max(res_dict)]
188
+ comb = []
189
+ for i in cluster_items:
190
+ z = ' OR '.join(i)
191
+ comb.append("(" + z + ")")
192
+ combinations = []
193
+ for subset in itertools.combinations(comb, 2):
194
+ combinations.append(subset)
195
+ f1_list = []
196
+ for s in combinations:
197
+ final = ' AND '.join(s)
198
+ f1_list.append("(" + final + ")")
199
+ f_1 = ' OR '.join(f1_list)
200
+ # ---------- PubMed Abstract Extraction ----------
201
+ ncbi_url = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/'
202
+ last_url = 'esearch.fcgi?db=pubmed' + '&term=' + f_1
203
+ overall_url = ncbi_url + last_url + '&rettype=json' + '&sort=relevance'
204
+ try:
205
+ pubmed_search_request = requests.get(overall_url, timeout=20)
206
+ root = ET.fromstring(pubmed_search_request.text)
207
+ levels = root.findall('.//Id')
208
+ search_id_list = [level.text for level in levels]
209
+ if not search_id_list:
210
+ return {"error": "No PubMed results found."}
211
+ except Exception as e:
212
+ return {"error": f"Error retrieving from PubMed: {str(e)}"}
213
+ all_search_ids = ','.join(search_id_list)
214
+ fetch_url = 'efetch.fcgi?db=pubmed'
215
+ search_id = '&id=' + all_search_ids
216
+ return_url = ncbi_url + fetch_url + search_id + '&rettype=text' + '&retmode=xml' + '&retmax=500' + '&sort=relevance'
217
+ try:
218
+ pubmed_abstract_request = requests.get(return_url, timeout=20)
219
+ root_1 = ET.fromstring(pubmed_abstract_request.text)
220
+ article_title = root_1.findall('.//ArticleTitle')
221
+ titles_list = [a.text for a in article_title]
222
+ article_abstract = root_1.findall('.//AbstractText')
223
+ abstracts_list = [b.text for b in article_abstract]
224
+ except Exception as e:
225
+ return {"error": f"Error extracting PubMed abstracts: {str(e)}"}
226
+ if not titles_list or not abstracts_list:
227
+ return {"error": "No abstracts found for this query."}
228
+ # ---------- Most relevant abstracts by heading ----------
229
+ try:
230
+ first_article = Article(article_link, language='en')
231
+ first_article.download()
232
+ first_article.parse()
233
+ article_heading = first_article.title
234
+ if not article_heading or not isinstance(article_heading, str):
235
+ article_heading = corpus[0] if corpus else ""
236
+ except Exception:
237
+ article_heading = corpus[0] if corpus else ""
238
+ model_4 = SentenceTransformer(model_4)
239
+ my_dict = dict(zip(titles_list, abstracts_list))
240
+ title_embeddings = model_4.encode(titles_list)
241
+ heading_embedding = model_4.encode([article_heading])
242
+ similarities = cosine_similarity(heading_embedding, title_embeddings)
243
+ max_n = max_retrieved
244
+ sorted_titles = [titles_list[index] for index in similarities.argsort()[0][-max_n:]]
245
+ sorted_abstract_list = [my_dict[list_elem] for list_elem in sorted_titles]
246
+ sorted_dict = {'Title': sorted_titles, 'Abstract': sorted_abstract_list}
247
 
248
+ # ---------- Evidence Extraction Integration ----------
249
+ if extract_evidence:
250
+ evidence_results = extract_evidence_sentences(
251
+ article_heading,
252
+ sorted_dict,
253
+ )
254
+ return evidence_results
 
 
 
 
 
 
 
 
 
 
255
  else:
256
+ return sorted_dict
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
257
 
258
+ igen_pubmed = gr.Interface(
259
+ keyphrase_generator,
260
+ inputs=[
261
+ gr.components.Textbox(lines=1, placeholder="Provide article web link here", value="", label="Article web link"),
262
+ gr.components.Dropdown(
263
+ choices=[
264
+ 'sentence-transformers/all-mpnet-base-v2',
265
+ 'sentence-transformers/all-mpnet-base-v1',
266
+ 'sentence-transformers/all-distilroberta-v1',
267
+ 'sentence-transformers/gtr-t5-large',
268
+ 'pritamdeka/S-Bluebert-snli-multinli-stsb',
269
+ 'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
270
+ 'pritamdeka/S-BioBert-snli-multinli-stsb',
271
+ 'sentence-transformers/stsb-mpnet-base-v2',
272
+ 'sentence-transformers/stsb-roberta-base-v2',
273
+ 'sentence-transformers/stsb-distilroberta-base-v2',
274
+ 'sentence-transformers/sentence-t5-large',
275
+ 'sentence-transformers/sentence-t5-base'
276
+ ],
277
+ type="value",
278
+ value='sentence-transformers/stsb-roberta-base-v2',
279
+ label="Select any SBERT model for TextRank"
280
+ ),
281
+ gr.components.Dropdown(
282
+ choices=[
283
+ 'sentence-transformers/paraphrase-mpnet-base-v2',
284
+ 'sentence-transformers/all-mpnet-base-v1',
285
+ 'sentence-transformers/paraphrase-distilroberta-base-v1',
286
+ 'sentence-transformers/paraphrase-xlm-r-multilingual-v1',
287
+ 'sentence-transformers/paraphrase-multilingual-mpnet-base-v2',
288
+ 'sentence-transformers/paraphrase-albert-small-v2',
289
+ 'sentence-transformers/paraphrase-albert-base-v2',
290
+ 'sentence-transformers/paraphrase-MiniLM-L12-v2',
291
+ 'sentence-transformers/paraphrase-MiniLM-L6-v2',
292
+ 'sentence-transformers/all-MiniLM-L12-v2',
293
+ 'sentence-transformers/all-distilroberta-v1',
294
+ 'sentence-transformers/paraphrase-TinyBERT-L6-v2',
295
+ 'sentence-transformers/paraphrase-MiniLM-L3-v2',
296
+ 'sentence-transformers/all-MiniLM-L6-v2'
297
+ ],
298
+ type="value",
299
+ value='sentence-transformers/all-mpnet-base-v1',
300
+ label="Select any SBERT model for keyphrases"
301
+ ),
302
+ gr.components.Slider(minimum=5, maximum=20, step=1, value=10, label="Max Keywords"),
303
+ gr.components.Dropdown(
304
+ choices=[
305
+ 'cambridgeltl/SapBERT-from-PubMedBERT-fulltext',
306
+ 'cambridgeltl/SapBERT-from-PubMedBERT-fulltext-mean-token'
307
+ ],
308
+ type="value",
309
+ value='cambridgeltl/SapBERT-from-PubMedBERT-fulltext',
310
+ label="Select any SapBERT model for clustering"
311
+ ),
312
+ gr.components.Slider(minimum=5, maximum=15, step=1, value=10, label="PubMed Max Abstracts"),
313
+ gr.components.Dropdown(
314
+ choices=[
315
+ 'pritamdeka/S-Bluebert-snli-multinli-stsb',
316
+ 'pritamdeka/S-BioBert-snli-multinli-stsb',
317
+ 'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
318
+ 'sentence-transformers/all-mpnet-base-v2'
319
+ ],
320
+ type="value",
321
+ value='sentence-transformers/all-mpnet-base-v2',
322
+ label="Select any SBERT model for abstracts"
323
+ ),
324
+ gr.components.Checkbox(label="Enable Evidence Extraction", value=True)
325
+ ],
326
+ outputs=gr.components.JSON(label="Results (Abstracts + Evidence)"),
327
+ title="PubMed Abstract Retriever",
328
+ description="Retrieves relevant PubMed abstracts for an online article and optionally extracts evidence for the claim made in the article headline. Outputs JSON mapping each abstract to evidence sentences and their stance (ENTAILMENT/SUPPORT, CONTRADICTION, NEUTRAL).",
329
+ examples=[
330
+ [
331
+ "https://www.cancer.news/2021-12-22-mrna-vaccines-weaken-immune-system-cause-cancer.html",
332
+ 'sentence-transformers/all-mpnet-base-v1',
333
+ 'sentence-transformers/paraphrase-MiniLM-L12-v2',
334
+ 10,
335
+ 'cambridgeltl/SapBERT-from-PubMedBERT-fulltext',
336
+ 15,
337
+ 'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
338
+ True
339
+ ]
340
+ ]
341
+ )
 
 
 
 
 
 
 
 
342
 
343
+ igen_pubmed.launch(share=False, server_name='0.0.0.0', show_error=True)