Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from loadimg import load_img | |
import spaces | |
from transformers import AutoModelForImageSegmentation | |
import torch | |
from torchvision import transforms | |
import moviepy.editor as mp | |
from pydub import AudioSegment | |
from PIL import Image | |
import numpy as np | |
import os | |
import tempfile | |
import uuid | |
torch.set_float32_matmul_precision(["high", "highest"][0]) | |
birefnet = AutoModelForImageSegmentation.from_pretrained( | |
"ZhengPeng7/BiRefNet", trust_remote_code=True | |
) | |
birefnet.to("cuda") | |
transform_image = transforms.Compose( | |
[ | |
transforms.Resize((1024, 1024)), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
] | |
) | |
def fn(vid, bg_type="Color", bg_image=None, color="#00FF00", fps=0): | |
# Load the video using moviepy | |
video = mp.VideoFileClip(vid) | |
# Load original fps if fps value is equal to 0 | |
if fps == 0: | |
fps = video.fps | |
# Extract audio from the video | |
audio = video.audio | |
# Process video in chunks of 1 second | |
chunk_duration = 1 # seconds | |
total_duration = video.duration | |
start_time = 0 | |
progress = f'<div class="progress-container"><div class="progress-bar" style="--current: {start_time}; --total: {total_duration};"></div></div>' | |
processed_frames = [] | |
yield gr.update(visible=True), gr.update(visible=False), progress | |
while start_time < total_duration: | |
end_time = min(start_time + chunk_duration, total_duration) | |
chunk = video.subclip(start_time, end_time) | |
chunk_frames = chunk.iter_frames(fps=fps) | |
for frame in chunk_frames: | |
pil_image = Image.fromarray(frame) | |
if bg_type == "Color": | |
processed_image = process(pil_image, color) | |
else: | |
processed_image = process(pil_image, bg_image) | |
processed_frames.append(np.array(processed_image)) | |
yield processed_image, None, progress | |
# Save processed frames for the current chunk | |
temp_dir = "temp" | |
os.makedirs(temp_dir, exist_ok=True) | |
for i, frame in enumerate(processed_frames): | |
Image.fromarray(frame).save(os.path.join(temp_dir, f"frame_{start_time}_{i}.png")) | |
# Clear processed frames for the current chunk | |
processed_frames = [] | |
progress = f'<div class="progress-container"><div class="progress-bar" style="--current: {start_time}; --total: {total_duration};"></div></div>' | |
yield None, None, progress | |
start_time += chunk_duration | |
# Load all saved frames | |
all_frames = [] | |
for filename in sorted(os.listdir(temp_dir)): | |
if filename.startswith("frame_") and filename.endswith(".png"): | |
frame = np.array(Image.open(os.path.join(temp_dir, filename))) | |
all_frames.append(frame) | |
# Create a new video from the processed frames | |
processed_video = mp.ImageSequenceClip(all_frames, fps=fps) | |
# Add the original audio back to the processed video | |
processed_video = processed_video.set_audio(audio) | |
# Save the processed video to a temporary file | |
temp_filepath = os.path.join(temp_dir, "processed_video.mp4") | |
processed_video.write_videofile(temp_filepath, codec="libx264") | |
# Clean up temporary files | |
for filename in os.listdir(temp_dir): | |
os.remove(os.path.join(temp_dir, filename)) | |
yield gr.update(visible=False), gr.update(visible=True), progress | |
# Return the path to the temporary file | |
yield processed_image, temp_filepath, progress | |
def process(image, bg): | |
image_size = image.size | |
input_images = transform_image(image).unsqueeze(0).to("cuda") | |
# Prediction | |
with torch.no_grad(): | |
preds = birefnet(input_images)[-1].sigmoid().cpu() | |
pred = preds[0].squeeze() | |
pred_pil = transforms.ToPILImage()(pred) | |
mask = pred_pil.resize(image_size) | |
if bg.startswith("#"): | |
color_rgb = tuple(int(bg[i : i + 2], 16) for i in (1, 3, 5)) | |
background = Image.new("RGBA", image_size, color_rgb + (255,)) | |
else: | |
background = Image.open(bg).convert("RGBA").resize(image_size) | |
# Composite the image onto the background using the mask | |
image = Image.composite(image, background, mask) | |
return image | |
css=""" | |
.progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px} | |
.progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out} | |
""" | |
with gr.Blocks(css=css, theme="ocean") as demo: | |
with gr.Row(): | |
in_video = gr.Video(label="Input Video") | |
stream_image = gr.Image(label="Streaming Output", visible=False) | |
out_video = gr.Video(label="Final Output Video") | |
submit_button = gr.Button("Change Background") | |
with gr.Row(): | |
fps_slider = gr.Slider( | |
minimum=0, | |
maximum=60, | |
step=1, | |
value=0, | |
label="Output FPS (0 will inherit the original fps value)", | |
) | |
bg_type = gr.Radio(["Color", "Image"], label="Background Type", value="Color") | |
color_picker = gr.ColorPicker(label="Background Color", value="#00FF00", visible=True) | |
bg_image = gr.Image(label="Background Image", type="filepath", visible=False) | |
def update_visibility(bg_type): | |
if bg_type == "Color": | |
return gr.update(visible=True), gr.update(visible=False) | |
else: | |
return gr.update(visible=False), gr.update(visible=True) | |
bg_type.change(update_visibility, inputs=bg_type, outputs=[color_picker, bg_image]) | |
progress_bar = gr.Markdown(elem_id="progress") | |
examples = gr.Examples( | |
[["rickroll-2sec.mp4", "Image", "images.webp"], ["rickroll-2sec.mp4", "Color", None]], | |
inputs=[in_video, bg_type, bg_image], | |
outputs=[stream_image, out_video, progress_bar], | |
fn=fn, | |
cache_examples=True, | |
cache_mode="eager", | |
) | |
submit_button.click( | |
fn, | |
inputs=[in_video, bg_type, bg_image, color_picker, fps_slider], | |
outputs=[stream_image, out_video, progress_bar], | |
) | |
if __name__ == "__main__": | |
demo.launch(show_error=True) |