Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,234 Bytes
a72119e 496112d 8365126 a72119e de54836 684bc28 496112d 6d754a8 d6302a9 d3daa33 d6302a9 6d754a8 496112d 6d754a8 26bcd6d 8f6aa89 6d754a8 293e082 8f6aa89 26bcd6d 8f6aa89 26bcd6d 3d15a76 26bcd6d 8f6aa89 26bcd6d 6d754a8 26bcd6d 6d754a8 4902bd9 6d754a8 26bcd6d 8365126 d3daa33 26bcd6d 8f6aa89 293e082 8f6aa89 6d754a8 de54836 d3daa33 a72119e 6d754a8 a72119e 6d754a8 e63457c d3daa33 e63457c 6d754a8 2189235 6d754a8 293e082 8f6aa89 4902bd9 b1d6fce d3daa33 6d754a8 4902bd9 d3daa33 3d15a76 d3daa33 b8c17c8 609f960 26bcd6d d3daa33 26a50b2 b8c17c8 2189235 d3daa33 684bc28 26bcd6d 2189235 d3daa33 a72119e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import gradio as gr
from loadimg import load_img
import spaces
from transformers import AutoModelForImageSegmentation
import torch
from torchvision import transforms
import moviepy.editor as mp
from pydub import AudioSegment
from PIL import Image
import numpy as np
import os
import tempfile
import uuid
torch.set_float32_matmul_precision(["high", "highest"][0])
birefnet = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to("cuda")
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
@spaces.GPU
def fn(vid, bg_type="Color", bg_image=None, color="#00FF00", fps=0):
# Load the video using moviepy
video = mp.VideoFileClip(vid)
# Load original fps if fps value is equal to 0
if fps == 0:
fps = video.fps
# Extract audio from the video
audio = video.audio
# Process video in chunks of 1 second
chunk_duration = 1 # seconds
total_duration = video.duration
start_time = 0
progress = f'<div class="progress-container"><div class="progress-bar" style="--current: {start_time}; --total: {total_duration};"></div></div>'
processed_frames = []
yield gr.update(visible=True), gr.update(visible=False), progress
while start_time < total_duration:
end_time = min(start_time + chunk_duration, total_duration)
chunk = video.subclip(start_time, end_time)
chunk_frames = chunk.iter_frames(fps=fps)
for frame in chunk_frames:
pil_image = Image.fromarray(frame)
if bg_type == "Color":
processed_image = process(pil_image, color)
else:
processed_image = process(pil_image, bg_image)
processed_frames.append(np.array(processed_image))
yield processed_image, None, progress
# Save processed frames for the current chunk
temp_dir = "temp"
os.makedirs(temp_dir, exist_ok=True)
for i, frame in enumerate(processed_frames):
Image.fromarray(frame).save(os.path.join(temp_dir, f"frame_{start_time}_{i}.png"))
# Clear processed frames for the current chunk
processed_frames = []
progress = f'<div class="progress-container"><div class="progress-bar" style="--current: {start_time}; --total: {total_duration};"></div></div>'
yield None, None, progress
start_time += chunk_duration
# Load all saved frames
all_frames = []
for filename in sorted(os.listdir(temp_dir)):
if filename.startswith("frame_") and filename.endswith(".png"):
frame = np.array(Image.open(os.path.join(temp_dir, filename)))
all_frames.append(frame)
# Create a new video from the processed frames
processed_video = mp.ImageSequenceClip(all_frames, fps=fps)
# Add the original audio back to the processed video
processed_video = processed_video.set_audio(audio)
# Save the processed video to a temporary file
temp_filepath = os.path.join(temp_dir, "processed_video.mp4")
processed_video.write_videofile(temp_filepath, codec="libx264")
# Clean up temporary files
for filename in os.listdir(temp_dir):
os.remove(os.path.join(temp_dir, filename))
yield gr.update(visible=False), gr.update(visible=True), progress
# Return the path to the temporary file
yield processed_image, temp_filepath, progress
def process(image, bg):
image_size = image.size
input_images = transform_image(image).unsqueeze(0).to("cuda")
# Prediction
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
if bg.startswith("#"):
color_rgb = tuple(int(bg[i : i + 2], 16) for i in (1, 3, 5))
background = Image.new("RGBA", image_size, color_rgb + (255,))
else:
background = Image.open(bg).convert("RGBA").resize(image_size)
# Composite the image onto the background using the mask
image = Image.composite(image, background, mask)
return image
css="""
.progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
.progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
"""
with gr.Blocks(css=css, theme="ocean") as demo:
with gr.Row():
in_video = gr.Video(label="Input Video")
stream_image = gr.Image(label="Streaming Output", visible=False)
out_video = gr.Video(label="Final Output Video")
submit_button = gr.Button("Change Background")
with gr.Row():
fps_slider = gr.Slider(
minimum=0,
maximum=60,
step=1,
value=0,
label="Output FPS (0 will inherit the original fps value)",
)
bg_type = gr.Radio(["Color", "Image"], label="Background Type", value="Color")
color_picker = gr.ColorPicker(label="Background Color", value="#00FF00", visible=True)
bg_image = gr.Image(label="Background Image", type="filepath", visible=False)
def update_visibility(bg_type):
if bg_type == "Color":
return gr.update(visible=True), gr.update(visible=False)
else:
return gr.update(visible=False), gr.update(visible=True)
bg_type.change(update_visibility, inputs=bg_type, outputs=[color_picker, bg_image])
progress_bar = gr.Markdown(elem_id="progress")
examples = gr.Examples(
[["rickroll-2sec.mp4", "Image", "images.webp"], ["rickroll-2sec.mp4", "Color", None]],
inputs=[in_video, bg_type, bg_image],
outputs=[stream_image, out_video, progress_bar],
fn=fn,
cache_examples=True,
cache_mode="eager",
)
submit_button.click(
fn,
inputs=[in_video, bg_type, bg_image, color_picker, fps_slider],
outputs=[stream_image, out_video, progress_bar],
)
if __name__ == "__main__":
demo.launch(show_error=True) |