darrenphodgson76's picture
Update app.py
773749a verified
raw
history blame
6.51 kB
import os
import gradio as gr
import requests
import pandas as pd
from smolagents import CodeAgent, HfApiModel, DuckDuckGoSearchTool, tool
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Tool Definitions ---
@tool
def summarize_query(query: str) -> str:
"""
Provides a structured summary to reframe a query if search results are unclear or poor.
Args:
query (str): The search query that needs summarization.
Returns:
str: A concise summary of key facts about the given query.
"""
return f"Summarize and reframe: {query}"
search_tool = DuckDuckGoSearchTool()
# --- System Prompt for ReACT + Scratchpad + Auto-Retry ---
system_message = """
You are a ReACT agent with scratchpad memory and a retry mechanism.
For every question:
1. Thought: Think what is needed.
2. Action: (Optional) Use a tool with a clear query.
3. Observation: Record what tool returned.
If the first Observation is empty or irrelevant:
4. Thought: The result was unclear. I should reframe and retry.
5. Action: summarize_query with the original query.
6. Action: DuckDuckGoSearchTool with the reframed query.
7. Observation: Record new result.
Then:
8. Thought: Reflect on all observations.
9. FINAL ANSWER: Provide the answer.
Formatting Rules:
- Begin with FINAL ANSWER: [your answer]
- Numbers: plain (no commas unless list)
- Strings: no articles unless inside proper names
- Lists: comma-separated without extra punctuation
Example scratchpad flow:
Thought: Need fruits from painting.
Action: DuckDuckGoSearchTool('fruits in Embroidery from Uzbekistan painting')
Observation: (empty)
Thought: Unclear result, retry.
Action: summarize_query('fruits in Embroidery painting Uzbekistan')
Observation: pomegranate, apple, grape
Thought: Find breakfast fruits.
Action: DuckDuckGoSearchTool('breakfast menu October 1949 SS Ile de France')
Observation: grapes, apples, oranges
Thought: Overlap is grapes and apples.
FINAL ANSWER: grapes, apples
"""
# --- Build the Smart Agent ---
smart_agent = CodeAgent(
tools=[search_tool, summarize_query],
model=HfApiModel(system_message=system_message) # <-- key fix here
)
# --- Integrate into Gradio App ---
class BasicAgent:
def __init__(self):
print("SmolAgent with ReACT, Scratchpad & Retry initialized.")
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
answer = smart_agent.run(question)
print(f"Agent returning answer: {answer}")
return answer
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = profile.username
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please log in to Hugging Face using the button above.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
agent = BasicAgent()
except Exception as e:
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
# Fetch questions
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty or invalid.", None
except Exception as e:
return f"Error fetching questions: {e}", None
# Run agent on each question
results_log = []
answers_payload = []
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": submitted_answer
})
except Exception as e:
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"AGENT ERROR: {e}"
})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# Submit answers
submission_data = {
"username": username,
"agent_code": agent_code,
"answers": answers_payload
}
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/"
f"{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', '')}"
)
results_df = pd.DataFrame(results_log)
return final_status, results_df
except Exception as e:
results_df = pd.DataFrame(results_log)
return f"Submission Failed: {e}", results_df
# --- Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("# SmolAgent GAIA Evaluation Runner 🚀")
gr.Markdown(
"""
**Instructions:**
1. Clone this space and modify if needed.
2. Log in to Hugging Face.
3. Click 'Run Evaluation & Submit All Answers'.
**Note:** Evaluation can take a few minutes.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host = os.getenv("SPACE_HOST")
space_id = os.getenv("SPACE_ID")
if space_host:
print(f"SPACE_HOST: {space_host}")
if space_id:
print(f"SPACE_ID: {space_id}")
print("Launching Gradio Interface...")
demo.launch(debug=True, share=False)