File size: 6,508 Bytes
0412d41
 
 
 
 
98bf598
10e9b7d
0412d41
 
 
 
e80aab9
98bf598
 
31243f4
0412d41
 
 
 
 
 
 
31243f4
98bf598
 
 
 
0412d41
98bf598
773749a
98bf598
 
 
 
 
 
 
0412d41
 
 
 
 
98bf598
0412d41
 
 
98bf598
0412d41
 
 
 
 
98bf598
0412d41
 
98bf598
0412d41
 
 
 
 
98bf598
 
0412d41
98bf598
 
 
0412d41
98bf598
 
 
773749a
98bf598
0412d41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import os
import gradio as gr
import requests
import pandas as pd

from smolagents import CodeAgent, HfApiModel, DuckDuckGoSearchTool, tool

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Tool Definitions ---

@tool
def summarize_query(query: str) -> str:
    """
    Provides a structured summary to reframe a query if search results are unclear or poor.

    Args:
        query (str): The search query that needs summarization.

    Returns:
        str: A concise summary of key facts about the given query.
    """
    return f"Summarize and reframe: {query}"

search_tool = DuckDuckGoSearchTool()

# --- System Prompt for ReACT + Scratchpad + Auto-Retry ---

system_message = """
You are a ReACT agent with scratchpad memory and a retry mechanism.

For every question:
1. Thought: Think what is needed.
2. Action: (Optional) Use a tool with a clear query.
3. Observation: Record what tool returned.

If the first Observation is empty or irrelevant:
4. Thought: The result was unclear. I should reframe and retry.
5. Action: summarize_query with the original query.
6. Action: DuckDuckGoSearchTool with the reframed query.
7. Observation: Record new result.

Then:
8. Thought: Reflect on all observations.
9. FINAL ANSWER: Provide the answer.

Formatting Rules:
- Begin with FINAL ANSWER: [your answer]
- Numbers: plain (no commas unless list)
- Strings: no articles unless inside proper names
- Lists: comma-separated without extra punctuation

Example scratchpad flow:
Thought: Need fruits from painting.
Action: DuckDuckGoSearchTool('fruits in Embroidery from Uzbekistan painting')
Observation: (empty)
Thought: Unclear result, retry.
Action: summarize_query('fruits in Embroidery painting Uzbekistan')
Observation: pomegranate, apple, grape
Thought: Find breakfast fruits.
Action: DuckDuckGoSearchTool('breakfast menu October 1949 SS Ile de France')
Observation: grapes, apples, oranges
Thought: Overlap is grapes and apples.
FINAL ANSWER: grapes, apples
"""

# --- Build the Smart Agent ---

smart_agent = CodeAgent(
    tools=[search_tool, summarize_query],
    model=HfApiModel(system_message=system_message)  # <-- key fix here
)

# --- Integrate into Gradio App ---

class BasicAgent:
    def __init__(self):
        print("SmolAgent with ReACT, Scratchpad & Retry initialized.")

    def __call__(self, question: str) -> str:
        print(f"Agent received question (first 50 chars): {question[:50]}...")
        answer = smart_agent.run(question)
        print(f"Agent returning answer: {answer}")
        return answer

def run_and_submit_all(profile: gr.OAuthProfile | None):
    space_id = os.getenv("SPACE_ID")

    if profile:
        username = profile.username
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please log in to Hugging Face using the button above.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    try:
        agent = BasicAgent()
    except Exception as e:
        return f"Error initializing agent: {e}", None

    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"

    # Fetch questions
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            return "Fetched questions list is empty or invalid.", None
    except Exception as e:
        return f"Error fetching questions: {e}", None

    # Run agent on each question
    results_log = []
    answers_payload = []
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({
                "Task ID": task_id,
                "Question": question_text,
                "Submitted Answer": submitted_answer
            })
        except Exception as e:
            results_log.append({
                "Task ID": task_id,
                "Question": question_text,
                "Submitted Answer": f"AGENT ERROR: {e}"
            })

    if not answers_payload:
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # Submit answers
    submission_data = {
        "username": username,
        "agent_code": agent_code,
        "answers": answers_payload
    }
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/"
            f"{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', '')}"
        )
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except Exception as e:
        results_df = pd.DataFrame(results_log)
        return f"Submission Failed: {e}", results_df

# --- Gradio Interface ---

with gr.Blocks() as demo:
    gr.Markdown("# SmolAgent GAIA Evaluation Runner 🚀")
    gr.Markdown(
        """
        **Instructions:**
        1. Clone this space and modify if needed.
        2. Log in to Hugging Face.
        3. Click 'Run Evaluation & Submit All Answers'.
        **Note:** Evaluation can take a few minutes.
        """
    )
    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers")
    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    space_host = os.getenv("SPACE_HOST")
    space_id = os.getenv("SPACE_ID")
    if space_host:
        print(f"SPACE_HOST: {space_host}")
    if space_id:
        print(f"SPACE_ID: {space_id}")
    print("Launching Gradio Interface...")
    demo.launch(debug=True, share=False)