Spaces:
Runtime error
Runtime error
import math | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
from .attention import FeedForwardSwiGLU | |
from torch.distributed.nn.functional import all_gather | |
_LOAD_BALANCING_LOSS = [] | |
def save_load_balancing_loss(loss): | |
global _LOAD_BALANCING_LOSS | |
_LOAD_BALANCING_LOSS.append(loss) | |
def clear_load_balancing_loss(): | |
global _LOAD_BALANCING_LOSS | |
_LOAD_BALANCING_LOSS.clear() | |
def get_load_balancing_loss(): | |
global _LOAD_BALANCING_LOSS | |
return _LOAD_BALANCING_LOSS | |
def batched_load_balancing_loss(): | |
aux_losses_arr = get_load_balancing_loss() | |
alpha = aux_losses_arr[0][-1] | |
Pi = torch.stack([ent[1] for ent in aux_losses_arr], dim=0) | |
fi = torch.stack([ent[2] for ent in aux_losses_arr], dim=0) | |
fi_list = all_gather(fi) | |
fi = torch.stack(fi_list, 0).mean(0) | |
aux_loss = (Pi * fi).sum(-1).mean() * alpha | |
return aux_loss | |
# Modified from https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py | |
class MoEGate(nn.Module): | |
def __init__(self, embed_dim, num_routed_experts=4, num_activated_experts=2, aux_loss_alpha=0.01): | |
super().__init__() | |
self.top_k = num_activated_experts | |
self.n_routed_experts = num_routed_experts | |
self.scoring_func = 'softmax' | |
self.alpha = aux_loss_alpha | |
self.seq_aux = False | |
# topk selection algorithm | |
self.norm_topk_prob = False | |
self.gating_dim = embed_dim | |
self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim))) | |
self.reset_parameters() | |
def reset_parameters(self) -> None: | |
import torch.nn.init as init | |
init.kaiming_uniform_(self.weight, a=math.sqrt(5)) | |
def forward(self, hidden_states): | |
bsz, seq_len, h = hidden_states.shape | |
# print(bsz, seq_len, h) | |
### compute gating score | |
hidden_states = hidden_states.view(-1, h) | |
logits = F.linear(hidden_states, self.weight, None) | |
if self.scoring_func == 'softmax': | |
scores = logits.softmax(dim=-1) | |
else: | |
raise NotImplementedError(f'insupportable scoring function for MoE gating: {self.scoring_func}') | |
### select top-k experts | |
topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False) | |
### norm gate to sum 1 | |
if self.top_k > 1 and self.norm_topk_prob: | |
denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20 | |
topk_weight = topk_weight / denominator | |
### expert-level computation auxiliary loss | |
if self.training and self.alpha > 0.0: | |
scores_for_aux = scores | |
aux_topk = self.top_k | |
# always compute aux loss based on the naive greedy topk method | |
topk_idx_for_aux_loss = topk_idx.view(bsz, -1) | |
if self.seq_aux: | |
scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1) | |
ce = torch.zeros(bsz, self.n_routed_experts, device=hidden_states.device) | |
ce.scatter_add_(1, topk_idx_for_aux_loss, torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device)).div_(seq_len * aux_topk / self.n_routed_experts) | |
aux_loss = (ce * scores_for_seq_aux.mean(dim = 1)).sum(dim = 1).mean() * self.alpha | |
else: | |
mask_ce = F.one_hot(topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts) | |
ce = mask_ce.float().mean(0) | |
Pi = scores_for_aux.mean(0) | |
fi = ce * self.n_routed_experts | |
aux_loss = (Pi * fi).sum() * self.alpha | |
save_load_balancing_loss((aux_loss, Pi, fi, self.alpha)) | |
else: | |
aux_loss = None | |
return topk_idx, topk_weight, aux_loss | |
# Modified from https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py | |
class MOEFeedForwardSwiGLU(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
hidden_dim: int, | |
num_routed_experts: int, | |
num_activated_experts: int, | |
): | |
super().__init__() | |
self.shared_experts = FeedForwardSwiGLU(dim, hidden_dim // 2) | |
self.experts = nn.ModuleList([FeedForwardSwiGLU(dim, hidden_dim) for i in range(num_routed_experts)]) | |
self.gate = MoEGate( | |
embed_dim = dim, | |
num_routed_experts = num_routed_experts, | |
num_activated_experts = num_activated_experts | |
) | |
self.num_activated_experts = num_activated_experts | |
def forward(self, x): | |
wtype = x.dtype | |
identity = x | |
orig_shape = x.shape | |
topk_idx, topk_weight, aux_loss = self.gate(x) | |
x = x.view(-1, x.shape[-1]) | |
flat_topk_idx = topk_idx.view(-1) | |
if self.training: | |
x = x.repeat_interleave(self.num_activated_experts, dim=0) | |
y = torch.empty_like(x, dtype=wtype) | |
for i, expert in enumerate(self.experts): | |
y[flat_topk_idx == i] = expert(x[flat_topk_idx == i]).to(dtype=wtype) | |
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1) | |
y = y.view(*orig_shape).to(dtype=wtype) | |
#y = AddAuxiliaryLoss.apply(y, aux_loss) | |
else: | |
y = self.moe_infer(x, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape) | |
y = y + self.shared_experts(identity) | |
return y | |
def moe_infer(self, x, flat_expert_indices, flat_expert_weights): | |
expert_cache = torch.zeros_like(x) | |
idxs = flat_expert_indices.argsort() | |
tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0) | |
token_idxs = idxs // self.num_activated_experts | |
for i, end_idx in enumerate(tokens_per_expert): | |
start_idx = 0 if i == 0 else tokens_per_expert[i-1] | |
if start_idx == end_idx: | |
continue | |
expert = self.experts[i] | |
exp_token_idx = token_idxs[start_idx:end_idx] | |
expert_tokens = x[exp_token_idx] | |
expert_out = expert(expert_tokens) | |
expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]]) | |
# for fp16 and other dtype | |
expert_cache = expert_cache.to(expert_out.dtype) | |
expert_cache.scatter_reduce_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out, reduce='sum') | |
return expert_cache | |