Spaces:
Runtime error
Runtime error
first commit
Browse files- LICENSE +21 -0
- README.md +97 -1
- gradio_demo.py +178 -0
- hi_diffusers/__init__.py +2 -0
- hi_diffusers/models/attention.py +106 -0
- hi_diffusers/models/attention_processor.py +95 -0
- hi_diffusers/models/embeddings.py +114 -0
- hi_diffusers/models/moe.py +154 -0
- hi_diffusers/models/transformers/transformer_hidream_image.py +526 -0
- hi_diffusers/pipelines/hidream_image/pipeline_hidream_image.py +733 -0
- hi_diffusers/pipelines/hidream_image/pipeline_output.py +21 -0
- hi_diffusers/schedulers/flash_flow_match.py +428 -0
- hi_diffusers/schedulers/fm_solvers_unipc.py +800 -0
- inference.py +138 -0
- pyproject.toml +16 -0
- requirements.txt +10 -0
- uv.lock +0 -0
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2025 HiDream.ai
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
CHANGED
@@ -5,9 +5,105 @@ colorFrom: pink
|
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.23.3
|
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
short_description: 'Unofficial HiDream-ai Spaces '
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.23.3
|
8 |
+
python_version: 3.10
|
9 |
app_file: app.py
|
10 |
pinned: false
|
11 |
short_description: 'Unofficial HiDream-ai Spaces '
|
12 |
---
|
13 |
|
14 |
+
# HiDream-I1
|
15 |
+
|
16 |
+

|
17 |
+
|
18 |
+
`HiDream-I1` is a new open-source image generative foundation model with 17B parameters that achieves state-of-the-art image generation quality within seconds.
|
19 |
+
|
20 |
+
## Project Updates
|
21 |
+
- ```2025/4/7```: We've open-sourced the text-to-image model **HiDream-I1**.
|
22 |
+
|
23 |
+
|
24 |
+
## Models
|
25 |
+
|
26 |
+
We offer both the full version and distilled models. For more information about the models, please refer to the link under Usage.
|
27 |
+
|
28 |
+
| Name | Script | Inference Steps | HuggingFace repo |
|
29 |
+
| --------------- | -------------------------------------------------- | --------------- | ---------------------- |
|
30 |
+
| HiDream-I1-Full | [inference.py](./inference.py) | 50 | π€ [HiDream-I1-Full](https://huggingface.co/HiDream-ai/HiDream-I1-Full) |
|
31 |
+
| HiDream-I1-Dev | [inference.py](./inference.py) | 28 | π€ [HiDream-I1-Dev](https://huggingface.co/HiDream-ai/HiDream-I1-Dev) |
|
32 |
+
| HiDream-I1-Fast | [inference.py](./inference.py) | 16 | π€ [HiDream-I1-Fast](https://huggingface.co/HiDream-ai/HiDream-I1-Fast) |
|
33 |
+
|
34 |
+
|
35 |
+
## Quick Start
|
36 |
+
Please make sure you have installed [Flash Attention](https://github.com/Dao-AILab/flash-attention). We recommend CUDA versions 12.4 for the manual installation.
|
37 |
+
```
|
38 |
+
pip install -r requirements.txt
|
39 |
+
```
|
40 |
+
|
41 |
+
Then you can run the inference scripts to generate images:
|
42 |
+
|
43 |
+
``` python
|
44 |
+
# For full model inference
|
45 |
+
python ./inference.py --model_type full
|
46 |
+
|
47 |
+
# For distilled dev model inference
|
48 |
+
python ./inference.py --model_type dev
|
49 |
+
|
50 |
+
# For distilled fast model inference
|
51 |
+
python ./inference.py --model_type fast
|
52 |
+
```
|
53 |
+
> **Note:** The inference script will automatically download `meta-llama/Meta-Llama-3.1-8B-Instruct` model files. If you encounter network issues, you can download these files ahead of time and place them in the appropriate cache directory to avoid download failures during inference.
|
54 |
+
|
55 |
+
## Gradio Demo
|
56 |
+
|
57 |
+
We also provide a Gradio demo for interactive image generation. You can run the demo with:
|
58 |
+
|
59 |
+
``` python
|
60 |
+
python gradio_demo.py
|
61 |
+
```
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
## Evaluation Metrics
|
66 |
+
|
67 |
+
### DPG-Bench
|
68 |
+
| Model | Overall | Global | Entity | Attribute | Relation | Other |
|
69 |
+
| -------------- | --------- | ------ | ------ | --------- | -------- | ----- |
|
70 |
+
| PixArt-alpha | 71.11 | 74.97 | 79.32 | 78.60 | 82.57 | 76.96 |
|
71 |
+
| SDXL | 74.65 | 83.27 | 82.43 | 80.91 | 86.76 | 80.41 |
|
72 |
+
| DALL-E 3 | 83.50 | 90.97 | 89.61 | 88.39 | 90.58 | 89.83 |
|
73 |
+
| Flux.1-dev | 83.79 | 85.80 | 86.79 | 89.98 | 90.04 | 89.90 |
|
74 |
+
| SD3-Medium | 84.08 | 87.90 | 91.01 | 88.83 | 80.70 | 88.68 |
|
75 |
+
| Janus-Pro-7B | 84.19 | 86.90 | 88.90 | 89.40 | 89.32 | 89.48 |
|
76 |
+
| CogView4-6B | 85.13 | 83.85 | 90.35 | 91.17 | 91.14 | 87.29 |
|
77 |
+
| **HiDream-I1** | **85.89** | 76.44 | 90.22 | 89.48 | 93.74 | 91.83 |
|
78 |
+
|
79 |
+
### GenEval
|
80 |
+
|
81 |
+
| Model | Overall | Single Obj. | Two Obj. | Counting | Colors | Position | Color attribution |
|
82 |
+
| -------------- | -------- | ----------- | -------- | -------- | ------ | -------- | ----------------- |
|
83 |
+
| SDXL | 0.55 | 0.98 | 0.74 | 0.39 | 0.85 | 0.15 | 0.23 |
|
84 |
+
| PixArt-alpha | 0.48 | 0.98 | 0.50 | 0.44 | 0.80 | 0.08 | 0.07 |
|
85 |
+
| Flux.1-dev | 0.66 | 0.98 | 0.79 | 0.73 | 0.77 | 0.22 | 0.45 |
|
86 |
+
| DALL-E 3 | 0.67 | 0.96 | 0.87 | 0.47 | 0.83 | 0.43 | 0.45 |
|
87 |
+
| CogView4-6B | 0.73 | 0.99 | 0.86 | 0.66 | 0.79 | 0.48 | 0.58 |
|
88 |
+
| SD3-Medium | 0.74 | 0.99 | 0.94 | 0.72 | 0.89 | 0.33 | 0.60 |
|
89 |
+
| Janus-Pro-7B | 0.80 | 0.99 | 0.89 | 0.59 | 0.90 | 0.79 | 0.66 |
|
90 |
+
| **HiDream-I1** | **0.83** | 1.00 | 0.98 | 0.79 | 0.91 | 0.60 | 0.72 |
|
91 |
+
|
92 |
+
### HPSv2.1 benchmark
|
93 |
+
|
94 |
+
| Model | Averaged | Animation | Concept-art | Painting | Photo |
|
95 |
+
| --------------------- | --------- | --------- | ----------- | -------- | ----- |
|
96 |
+
| Stable Diffusion v2.0 | 26.38 | 27.09 | 26.02 | 25.68 | 26.73 |
|
97 |
+
| Midjourney V6 | 30.29 | 32.02 | 30.29 | 29.74 | 29.10 |
|
98 |
+
| SDXL | 30.64 | 32.84 | 31.36 | 30.86 | 27.48 |
|
99 |
+
| Dall-E3 | 31.44 | 32.39 | 31.09 | 31.18 | 31.09 |
|
100 |
+
| SD3 | 31.53 | 32.60 | 31.82 | 32.06 | 29.62 |
|
101 |
+
| Midjourney V5 | 32.33 | 34.05 | 32.47 | 32.24 | 30.56 |
|
102 |
+
| CogView4-6B | 32.31 | 33.23 | 32.60 | 32.89 | 30.52 |
|
103 |
+
| Flux.1-dev | 32.47 | 33.87 | 32.27 | 32.62 | 31.11 |
|
104 |
+
| stable cascade | 32.95 | 34.58 | 33.13 | 33.29 | 30.78 |
|
105 |
+
| **HiDream-I1** | **33.82** | 35.05 | 33.74 | 33.88 | 32.61 |
|
106 |
+
|
107 |
+
## License
|
108 |
+
|
109 |
+
The code in this repository and the HiDream-I1 models are licensed under [MIT License](./LICENSE).
|
gradio_demo.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import spaces
|
3 |
+
import torch
|
4 |
+
from hi_diffusers import HiDreamImagePipeline, HiDreamImageTransformer2DModel
|
5 |
+
from hi_diffusers.schedulers.flash_flow_match import (
|
6 |
+
FlashFlowMatchEulerDiscreteScheduler,
|
7 |
+
)
|
8 |
+
from hi_diffusers.schedulers.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
9 |
+
from transformers import LlamaForCausalLM, PreTrainedTokenizerFast
|
10 |
+
|
11 |
+
# Constants
|
12 |
+
MODEL_PREFIX: str = "HiDream-ai"
|
13 |
+
LLAMA_MODEL_NAME: str = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
14 |
+
|
15 |
+
# Model configurations
|
16 |
+
MODEL_CONFIGS: dict[str, dict] = {
|
17 |
+
"dev": {
|
18 |
+
"path": f"{MODEL_PREFIX}/HiDream-I1-Dev",
|
19 |
+
"guidance_scale": 0.0,
|
20 |
+
"num_inference_steps": 28,
|
21 |
+
"shift": 6.0,
|
22 |
+
"scheduler": FlashFlowMatchEulerDiscreteScheduler,
|
23 |
+
},
|
24 |
+
"full": {
|
25 |
+
"path": f"{MODEL_PREFIX}/HiDream-I1-Full",
|
26 |
+
"guidance_scale": 5.0,
|
27 |
+
"num_inference_steps": 50,
|
28 |
+
"shift": 3.0,
|
29 |
+
"scheduler": FlowUniPCMultistepScheduler,
|
30 |
+
},
|
31 |
+
"fast": {
|
32 |
+
"path": f"{MODEL_PREFIX}/HiDream-I1-Fast",
|
33 |
+
"guidance_scale": 0.0,
|
34 |
+
"num_inference_steps": 16,
|
35 |
+
"shift": 3.0,
|
36 |
+
"scheduler": FlashFlowMatchEulerDiscreteScheduler,
|
37 |
+
},
|
38 |
+
}
|
39 |
+
|
40 |
+
# Supported image sizes
|
41 |
+
RESOLUTION_OPTIONS: list[str] = [
|
42 |
+
"1024 Γ 1024 (Square)",
|
43 |
+
"768 Γ 1360 (Portrait)",
|
44 |
+
"1360 Γ 768 (Landscape)",
|
45 |
+
"880 Γ 1168 (Portrait)",
|
46 |
+
"1168 Γ 880 (Landscape)",
|
47 |
+
"1248 Γ 832 (Landscape)",
|
48 |
+
"832 Γ 1248 (Portrait)",
|
49 |
+
]
|
50 |
+
|
51 |
+
# Model cache
|
52 |
+
loaded_models: dict[str, HiDreamImagePipeline] = {}
|
53 |
+
|
54 |
+
|
55 |
+
def parse_resolution(res_str: str) -> tuple[int, int]:
|
56 |
+
"""Parse resolution string like '1024 Γ 1024' into (1024, 1024)"""
|
57 |
+
return tuple(map(int, res_str.replace("Γ", "x").replace(" ", "").split("x")))
|
58 |
+
|
59 |
+
|
60 |
+
def load_models(model_type: str) -> HiDreamImagePipeline:
|
61 |
+
"""Load and initialize the HiDream model pipeline for a given model type."""
|
62 |
+
config = MODEL_CONFIGS[model_type]
|
63 |
+
pretrained_model = config["path"]
|
64 |
+
|
65 |
+
tokenizer = PreTrainedTokenizerFast.from_pretrained(
|
66 |
+
LLAMA_MODEL_NAME, use_fast=False
|
67 |
+
)
|
68 |
+
text_encoder = LlamaForCausalLM.from_pretrained(
|
69 |
+
LLAMA_MODEL_NAME,
|
70 |
+
output_hidden_states=True,
|
71 |
+
output_attentions=True,
|
72 |
+
torch_dtype=torch.bfloat16,
|
73 |
+
).to("cuda")
|
74 |
+
|
75 |
+
transformer = HiDreamImageTransformer2DModel.from_pretrained(
|
76 |
+
pretrained_model,
|
77 |
+
subfolder="transformer",
|
78 |
+
torch_dtype=torch.bfloat16,
|
79 |
+
).to("cuda")
|
80 |
+
|
81 |
+
scheduler = config["scheduler"](
|
82 |
+
num_train_timesteps=1000,
|
83 |
+
shift=config["shift"],
|
84 |
+
use_dynamic_shifting=False,
|
85 |
+
)
|
86 |
+
|
87 |
+
pipe = HiDreamImagePipeline.from_pretrained(
|
88 |
+
pretrained_model,
|
89 |
+
scheduler=scheduler,
|
90 |
+
tokenizer_4=tokenizer,
|
91 |
+
text_encoder_4=text_encoder,
|
92 |
+
torch_dtype=torch.bfloat16,
|
93 |
+
).to("cuda", torch.bfloat16)
|
94 |
+
|
95 |
+
pipe.transformer = transformer
|
96 |
+
return pipe
|
97 |
+
|
98 |
+
|
99 |
+
# Preload default model
|
100 |
+
print("π§ Preloading default model (full)...")
|
101 |
+
loaded_models["full"] = load_models("full")
|
102 |
+
print("β
Model loaded.")
|
103 |
+
|
104 |
+
|
105 |
+
@spaces.GPU(duration=90)
|
106 |
+
def generate_image(
|
107 |
+
model_type: str,
|
108 |
+
prompt: str,
|
109 |
+
resolution: str,
|
110 |
+
seed: int,
|
111 |
+
) -> tuple[object, int]:
|
112 |
+
"""Generate image using HiDream pipeline."""
|
113 |
+
if model_type not in loaded_models:
|
114 |
+
print(f"π¦ Lazy-loading model {model_type}...")
|
115 |
+
loaded_models[model_type] = load_models(model_type)
|
116 |
+
|
117 |
+
pipe: HiDreamImagePipeline = loaded_models[model_type]
|
118 |
+
config = MODEL_CONFIGS[model_type]
|
119 |
+
|
120 |
+
if seed == -1:
|
121 |
+
seed = torch.randint(0, 1_000_000, (1,)).item()
|
122 |
+
|
123 |
+
height, width = parse_resolution(resolution)
|
124 |
+
generator = torch.Generator("cuda").manual_seed(seed)
|
125 |
+
|
126 |
+
image = pipe(
|
127 |
+
prompt=prompt,
|
128 |
+
height=height,
|
129 |
+
width=width,
|
130 |
+
guidance_scale=config["guidance_scale"],
|
131 |
+
num_inference_steps=config["num_inference_steps"],
|
132 |
+
generator=generator,
|
133 |
+
).images[0]
|
134 |
+
|
135 |
+
torch.cuda.empty_cache()
|
136 |
+
return image, seed
|
137 |
+
|
138 |
+
|
139 |
+
# Gradio UI
|
140 |
+
with gr.Blocks(title="HiDream Image Generator") as demo:
|
141 |
+
gr.Markdown("## π HiDream Image Generator")
|
142 |
+
|
143 |
+
with gr.Row():
|
144 |
+
with gr.Column():
|
145 |
+
model_type = gr.Radio(
|
146 |
+
choices=list(MODEL_CONFIGS.keys()),
|
147 |
+
value="full",
|
148 |
+
label="Model Type",
|
149 |
+
info="Choose between full, fast or dev variants",
|
150 |
+
)
|
151 |
+
|
152 |
+
prompt = gr.Textbox(
|
153 |
+
label="Prompt",
|
154 |
+
placeholder="e.g. A futuristic city with floating cars at sunset",
|
155 |
+
lines=3,
|
156 |
+
)
|
157 |
+
|
158 |
+
resolution = gr.Radio(
|
159 |
+
choices=RESOLUTION_OPTIONS,
|
160 |
+
value=RESOLUTION_OPTIONS[0],
|
161 |
+
label="Resolution",
|
162 |
+
)
|
163 |
+
|
164 |
+
seed = gr.Number(label="Seed (-1 for random)", value=-1, precision=0)
|
165 |
+
generate_btn = gr.Button("Generate Image", variant="primary")
|
166 |
+
seed_used = gr.Number(label="Seed Used", interactive=False)
|
167 |
+
|
168 |
+
with gr.Column():
|
169 |
+
output_image = gr.Image(label="Generated Image", type="pil")
|
170 |
+
|
171 |
+
generate_btn.click(
|
172 |
+
fn=generate_image,
|
173 |
+
inputs=[model_type, prompt, resolution, seed],
|
174 |
+
outputs=[output_image, seed_used],
|
175 |
+
)
|
176 |
+
|
177 |
+
if __name__ == "__main__":
|
178 |
+
demo.launch()
|
hi_diffusers/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .models.transformers.transformer_hidream_image import HiDreamImageTransformer2DModel
|
2 |
+
from .pipelines.hidream_image.pipeline_hidream_image import HiDreamImagePipeline
|
hi_diffusers/models/attention.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from typing import Optional
|
4 |
+
from diffusers.models.attention_processor import Attention
|
5 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
6 |
+
|
7 |
+
@maybe_allow_in_graph
|
8 |
+
class HiDreamAttention(Attention):
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
query_dim: int,
|
12 |
+
heads: int = 8,
|
13 |
+
dim_head: int = 64,
|
14 |
+
upcast_attention: bool = False,
|
15 |
+
upcast_softmax: bool = False,
|
16 |
+
scale_qk: bool = True,
|
17 |
+
eps: float = 1e-5,
|
18 |
+
processor = None,
|
19 |
+
out_dim: int = None,
|
20 |
+
single: bool = False
|
21 |
+
):
|
22 |
+
super(Attention, self).__init__()
|
23 |
+
self.inner_dim = out_dim if out_dim is not None else dim_head * heads
|
24 |
+
self.query_dim = query_dim
|
25 |
+
self.upcast_attention = upcast_attention
|
26 |
+
self.upcast_softmax = upcast_softmax
|
27 |
+
self.out_dim = out_dim if out_dim is not None else query_dim
|
28 |
+
|
29 |
+
self.scale_qk = scale_qk
|
30 |
+
self.scale = dim_head**-0.5 if self.scale_qk else 1.0
|
31 |
+
|
32 |
+
self.heads = out_dim // dim_head if out_dim is not None else heads
|
33 |
+
self.sliceable_head_dim = heads
|
34 |
+
self.single = single
|
35 |
+
|
36 |
+
linear_cls = nn.Linear
|
37 |
+
self.linear_cls = linear_cls
|
38 |
+
self.to_q = linear_cls(query_dim, self.inner_dim)
|
39 |
+
self.to_k = linear_cls(self.inner_dim, self.inner_dim)
|
40 |
+
self.to_v = linear_cls(self.inner_dim, self.inner_dim)
|
41 |
+
self.to_out = linear_cls(self.inner_dim, self.out_dim)
|
42 |
+
self.q_rms_norm = nn.RMSNorm(self.inner_dim, eps)
|
43 |
+
self.k_rms_norm = nn.RMSNorm(self.inner_dim, eps)
|
44 |
+
|
45 |
+
if not single:
|
46 |
+
self.to_q_t = linear_cls(query_dim, self.inner_dim)
|
47 |
+
self.to_k_t = linear_cls(self.inner_dim, self.inner_dim)
|
48 |
+
self.to_v_t = linear_cls(self.inner_dim, self.inner_dim)
|
49 |
+
self.to_out_t = linear_cls(self.inner_dim, self.out_dim)
|
50 |
+
self.q_rms_norm_t = nn.RMSNorm(self.inner_dim, eps)
|
51 |
+
self.k_rms_norm_t = nn.RMSNorm(self.inner_dim, eps)
|
52 |
+
|
53 |
+
self.set_processor(processor)
|
54 |
+
self.apply(self._init_weights)
|
55 |
+
|
56 |
+
def _init_weights(self, m):
|
57 |
+
if isinstance(m, nn.Linear):
|
58 |
+
nn.init.xavier_uniform_(m.weight)
|
59 |
+
if m.bias is not None:
|
60 |
+
nn.init.constant_(m.bias, 0)
|
61 |
+
|
62 |
+
def forward(
|
63 |
+
self,
|
64 |
+
norm_image_tokens: torch.FloatTensor,
|
65 |
+
image_tokens_masks: torch.FloatTensor = None,
|
66 |
+
norm_text_tokens: torch.FloatTensor = None,
|
67 |
+
rope: torch.FloatTensor = None,
|
68 |
+
) -> torch.Tensor:
|
69 |
+
return self.processor(
|
70 |
+
self,
|
71 |
+
image_tokens = norm_image_tokens,
|
72 |
+
image_tokens_masks = image_tokens_masks,
|
73 |
+
text_tokens = norm_text_tokens,
|
74 |
+
rope = rope,
|
75 |
+
)
|
76 |
+
|
77 |
+
class FeedForwardSwiGLU(nn.Module):
|
78 |
+
def __init__(
|
79 |
+
self,
|
80 |
+
dim: int,
|
81 |
+
hidden_dim: int,
|
82 |
+
multiple_of: int = 256,
|
83 |
+
ffn_dim_multiplier: Optional[float] = None,
|
84 |
+
):
|
85 |
+
super().__init__()
|
86 |
+
hidden_dim = int(2 * hidden_dim / 3)
|
87 |
+
# custom dim factor multiplier
|
88 |
+
if ffn_dim_multiplier is not None:
|
89 |
+
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
|
90 |
+
hidden_dim = multiple_of * (
|
91 |
+
(hidden_dim + multiple_of - 1) // multiple_of
|
92 |
+
)
|
93 |
+
|
94 |
+
self.w1 = nn.Linear(dim, hidden_dim, bias=False)
|
95 |
+
self.w2 = nn.Linear(hidden_dim, dim, bias=False)
|
96 |
+
self.w3 = nn.Linear(dim, hidden_dim, bias=False)
|
97 |
+
self.apply(self._init_weights)
|
98 |
+
|
99 |
+
def _init_weights(self, m):
|
100 |
+
if isinstance(m, nn.Linear):
|
101 |
+
nn.init.xavier_uniform_(m.weight)
|
102 |
+
if m.bias is not None:
|
103 |
+
nn.init.constant_(m.bias, 0)
|
104 |
+
|
105 |
+
def forward(self, x):
|
106 |
+
return self.w2(torch.nn.functional.silu(self.w1(x)) * self.w3(x))
|
hi_diffusers/models/attention_processor.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
import torch
|
3 |
+
from .attention import HiDreamAttention
|
4 |
+
|
5 |
+
try:
|
6 |
+
from flash_attn_interface import flash_attn_func
|
7 |
+
USE_FLASH_ATTN3 = True
|
8 |
+
except:
|
9 |
+
from flash_attn import flash_attn_func
|
10 |
+
USE_FLASH_ATTN3 = False
|
11 |
+
|
12 |
+
# Copied from https://github.com/black-forest-labs/flux/blob/main/src/flux/math.py
|
13 |
+
def apply_rope(xq: torch.Tensor, xk: torch.Tensor, freqs_cis: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
|
14 |
+
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
|
15 |
+
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
|
16 |
+
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
|
17 |
+
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
|
18 |
+
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
|
19 |
+
|
20 |
+
def attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor):
|
21 |
+
if USE_FLASH_ATTN3:
|
22 |
+
hidden_states = flash_attn_func(query, key, value, causal=False, deterministic=False)[0]
|
23 |
+
else:
|
24 |
+
hidden_states = flash_attn_func(query, key, value, dropout_p=0., causal=False)
|
25 |
+
hidden_states = hidden_states.flatten(-2)
|
26 |
+
hidden_states = hidden_states.to(query.dtype)
|
27 |
+
return hidden_states
|
28 |
+
|
29 |
+
class HiDreamAttnProcessor_flashattn:
|
30 |
+
"""Attention processor used typically in processing the SD3-like self-attention projections."""
|
31 |
+
|
32 |
+
def __call__(
|
33 |
+
self,
|
34 |
+
attn: HiDreamAttention,
|
35 |
+
image_tokens: torch.FloatTensor,
|
36 |
+
image_tokens_masks: Optional[torch.FloatTensor] = None,
|
37 |
+
text_tokens: Optional[torch.FloatTensor] = None,
|
38 |
+
rope: torch.FloatTensor = None,
|
39 |
+
*args,
|
40 |
+
**kwargs,
|
41 |
+
) -> torch.FloatTensor:
|
42 |
+
dtype = image_tokens.dtype
|
43 |
+
batch_size = image_tokens.shape[0]
|
44 |
+
|
45 |
+
query_i = attn.q_rms_norm(attn.to_q(image_tokens)).to(dtype=dtype)
|
46 |
+
key_i = attn.k_rms_norm(attn.to_k(image_tokens)).to(dtype=dtype)
|
47 |
+
value_i = attn.to_v(image_tokens)
|
48 |
+
|
49 |
+
inner_dim = key_i.shape[-1]
|
50 |
+
head_dim = inner_dim // attn.heads
|
51 |
+
|
52 |
+
query_i = query_i.view(batch_size, -1, attn.heads, head_dim)
|
53 |
+
key_i = key_i.view(batch_size, -1, attn.heads, head_dim)
|
54 |
+
value_i = value_i.view(batch_size, -1, attn.heads, head_dim)
|
55 |
+
if image_tokens_masks is not None:
|
56 |
+
key_i = key_i * image_tokens_masks.view(batch_size, -1, 1, 1)
|
57 |
+
|
58 |
+
if not attn.single:
|
59 |
+
query_t = attn.q_rms_norm_t(attn.to_q_t(text_tokens)).to(dtype=dtype)
|
60 |
+
key_t = attn.k_rms_norm_t(attn.to_k_t(text_tokens)).to(dtype=dtype)
|
61 |
+
value_t = attn.to_v_t(text_tokens)
|
62 |
+
|
63 |
+
query_t = query_t.view(batch_size, -1, attn.heads, head_dim)
|
64 |
+
key_t = key_t.view(batch_size, -1, attn.heads, head_dim)
|
65 |
+
value_t = value_t.view(batch_size, -1, attn.heads, head_dim)
|
66 |
+
|
67 |
+
num_image_tokens = query_i.shape[1]
|
68 |
+
num_text_tokens = query_t.shape[1]
|
69 |
+
query = torch.cat([query_i, query_t], dim=1)
|
70 |
+
key = torch.cat([key_i, key_t], dim=1)
|
71 |
+
value = torch.cat([value_i, value_t], dim=1)
|
72 |
+
else:
|
73 |
+
query = query_i
|
74 |
+
key = key_i
|
75 |
+
value = value_i
|
76 |
+
|
77 |
+
if query.shape[-1] == rope.shape[-3] * 2:
|
78 |
+
query, key = apply_rope(query, key, rope)
|
79 |
+
else:
|
80 |
+
query_1, query_2 = query.chunk(2, dim=-1)
|
81 |
+
key_1, key_2 = key.chunk(2, dim=-1)
|
82 |
+
query_1, key_1 = apply_rope(query_1, key_1, rope)
|
83 |
+
query = torch.cat([query_1, query_2], dim=-1)
|
84 |
+
key = torch.cat([key_1, key_2], dim=-1)
|
85 |
+
|
86 |
+
hidden_states = attention(query, key, value)
|
87 |
+
|
88 |
+
if not attn.single:
|
89 |
+
hidden_states_i, hidden_states_t = torch.split(hidden_states, [num_image_tokens, num_text_tokens], dim=1)
|
90 |
+
hidden_states_i = attn.to_out(hidden_states_i)
|
91 |
+
hidden_states_t = attn.to_out_t(hidden_states_t)
|
92 |
+
return hidden_states_i, hidden_states_t
|
93 |
+
else:
|
94 |
+
hidden_states = attn.to_out(hidden_states)
|
95 |
+
return hidden_states
|
hi_diffusers/models/embeddings.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from typing import List
|
4 |
+
from diffusers.models.embeddings import Timesteps, TimestepEmbedding
|
5 |
+
|
6 |
+
# Copied from https://github.com/black-forest-labs/flux/blob/main/src/flux/math.py
|
7 |
+
def rope(pos: torch.Tensor, dim: int, theta: int) -> torch.Tensor:
|
8 |
+
assert dim % 2 == 0, "The dimension must be even."
|
9 |
+
|
10 |
+
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
|
11 |
+
omega = 1.0 / (theta**scale)
|
12 |
+
|
13 |
+
batch_size, seq_length = pos.shape
|
14 |
+
out = torch.einsum("...n,d->...nd", pos, omega)
|
15 |
+
cos_out = torch.cos(out)
|
16 |
+
sin_out = torch.sin(out)
|
17 |
+
|
18 |
+
stacked_out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1)
|
19 |
+
out = stacked_out.view(batch_size, -1, dim // 2, 2, 2)
|
20 |
+
return out.float()
|
21 |
+
|
22 |
+
# Copied from https://github.com/black-forest-labs/flux/blob/main/src/flux/modules/layers.py
|
23 |
+
class EmbedND(nn.Module):
|
24 |
+
def __init__(self, theta: int, axes_dim: List[int]):
|
25 |
+
super().__init__()
|
26 |
+
self.theta = theta
|
27 |
+
self.axes_dim = axes_dim
|
28 |
+
|
29 |
+
def forward(self, ids: torch.Tensor) -> torch.Tensor:
|
30 |
+
n_axes = ids.shape[-1]
|
31 |
+
emb = torch.cat(
|
32 |
+
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
|
33 |
+
dim=-3,
|
34 |
+
)
|
35 |
+
return emb.unsqueeze(2)
|
36 |
+
|
37 |
+
class PatchEmbed(nn.Module):
|
38 |
+
def __init__(
|
39 |
+
self,
|
40 |
+
patch_size=2,
|
41 |
+
in_channels=4,
|
42 |
+
out_channels=1024,
|
43 |
+
):
|
44 |
+
super().__init__()
|
45 |
+
self.patch_size = patch_size
|
46 |
+
self.out_channels = out_channels
|
47 |
+
self.proj = nn.Linear(in_channels * patch_size * patch_size, out_channels, bias=True)
|
48 |
+
self.apply(self._init_weights)
|
49 |
+
|
50 |
+
def _init_weights(self, m):
|
51 |
+
if isinstance(m, nn.Linear):
|
52 |
+
nn.init.xavier_uniform_(m.weight)
|
53 |
+
if m.bias is not None:
|
54 |
+
nn.init.constant_(m.bias, 0)
|
55 |
+
|
56 |
+
def forward(self, latent):
|
57 |
+
latent = self.proj(latent)
|
58 |
+
return latent
|
59 |
+
|
60 |
+
class PooledEmbed(nn.Module):
|
61 |
+
def __init__(self, text_emb_dim, hidden_size):
|
62 |
+
super().__init__()
|
63 |
+
self.pooled_embedder = TimestepEmbedding(in_channels=text_emb_dim, time_embed_dim=hidden_size)
|
64 |
+
self.apply(self._init_weights)
|
65 |
+
|
66 |
+
def _init_weights(self, m):
|
67 |
+
if isinstance(m, nn.Linear):
|
68 |
+
nn.init.normal_(m.weight, std=0.02)
|
69 |
+
if m.bias is not None:
|
70 |
+
nn.init.constant_(m.bias, 0)
|
71 |
+
|
72 |
+
def forward(self, pooled_embed):
|
73 |
+
return self.pooled_embedder(pooled_embed)
|
74 |
+
|
75 |
+
class TimestepEmbed(nn.Module):
|
76 |
+
def __init__(self, hidden_size, frequency_embedding_size=256):
|
77 |
+
super().__init__()
|
78 |
+
self.time_proj = Timesteps(num_channels=frequency_embedding_size, flip_sin_to_cos=True, downscale_freq_shift=0)
|
79 |
+
self.timestep_embedder = TimestepEmbedding(in_channels=frequency_embedding_size, time_embed_dim=hidden_size)
|
80 |
+
self.apply(self._init_weights)
|
81 |
+
|
82 |
+
def _init_weights(self, m):
|
83 |
+
if isinstance(m, nn.Linear):
|
84 |
+
nn.init.normal_(m.weight, std=0.02)
|
85 |
+
if m.bias is not None:
|
86 |
+
nn.init.constant_(m.bias, 0)
|
87 |
+
|
88 |
+
def forward(self, timesteps, wdtype):
|
89 |
+
t_emb = self.time_proj(timesteps).to(dtype=wdtype)
|
90 |
+
t_emb = self.timestep_embedder(t_emb)
|
91 |
+
return t_emb
|
92 |
+
|
93 |
+
class OutEmbed(nn.Module):
|
94 |
+
def __init__(self, hidden_size, patch_size, out_channels):
|
95 |
+
super().__init__()
|
96 |
+
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
97 |
+
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
|
98 |
+
self.adaLN_modulation = nn.Sequential(
|
99 |
+
nn.SiLU(),
|
100 |
+
nn.Linear(hidden_size, 2 * hidden_size, bias=True)
|
101 |
+
)
|
102 |
+
self.apply(self._init_weights)
|
103 |
+
|
104 |
+
def _init_weights(self, m):
|
105 |
+
if isinstance(m, nn.Linear):
|
106 |
+
nn.init.zeros_(m.weight)
|
107 |
+
if m.bias is not None:
|
108 |
+
nn.init.constant_(m.bias, 0)
|
109 |
+
|
110 |
+
def forward(self, x, adaln_input):
|
111 |
+
shift, scale = self.adaLN_modulation(adaln_input).chunk(2, dim=1)
|
112 |
+
x = self.norm_final(x) * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
113 |
+
x = self.linear(x)
|
114 |
+
return x
|
hi_diffusers/models/moe.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from .attention import FeedForwardSwiGLU
|
6 |
+
from torch.distributed.nn.functional import all_gather
|
7 |
+
|
8 |
+
_LOAD_BALANCING_LOSS = []
|
9 |
+
def save_load_balancing_loss(loss):
|
10 |
+
global _LOAD_BALANCING_LOSS
|
11 |
+
_LOAD_BALANCING_LOSS.append(loss)
|
12 |
+
|
13 |
+
def clear_load_balancing_loss():
|
14 |
+
global _LOAD_BALANCING_LOSS
|
15 |
+
_LOAD_BALANCING_LOSS.clear()
|
16 |
+
|
17 |
+
def get_load_balancing_loss():
|
18 |
+
global _LOAD_BALANCING_LOSS
|
19 |
+
return _LOAD_BALANCING_LOSS
|
20 |
+
|
21 |
+
def batched_load_balancing_loss():
|
22 |
+
aux_losses_arr = get_load_balancing_loss()
|
23 |
+
alpha = aux_losses_arr[0][-1]
|
24 |
+
Pi = torch.stack([ent[1] for ent in aux_losses_arr], dim=0)
|
25 |
+
fi = torch.stack([ent[2] for ent in aux_losses_arr], dim=0)
|
26 |
+
|
27 |
+
fi_list = all_gather(fi)
|
28 |
+
fi = torch.stack(fi_list, 0).mean(0)
|
29 |
+
|
30 |
+
aux_loss = (Pi * fi).sum(-1).mean() * alpha
|
31 |
+
return aux_loss
|
32 |
+
|
33 |
+
# Modified from https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
|
34 |
+
class MoEGate(nn.Module):
|
35 |
+
def __init__(self, embed_dim, num_routed_experts=4, num_activated_experts=2, aux_loss_alpha=0.01):
|
36 |
+
super().__init__()
|
37 |
+
self.top_k = num_activated_experts
|
38 |
+
self.n_routed_experts = num_routed_experts
|
39 |
+
|
40 |
+
self.scoring_func = 'softmax'
|
41 |
+
self.alpha = aux_loss_alpha
|
42 |
+
self.seq_aux = False
|
43 |
+
|
44 |
+
# topk selection algorithm
|
45 |
+
self.norm_topk_prob = False
|
46 |
+
self.gating_dim = embed_dim
|
47 |
+
self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim)))
|
48 |
+
self.reset_parameters()
|
49 |
+
|
50 |
+
def reset_parameters(self) -> None:
|
51 |
+
import torch.nn.init as init
|
52 |
+
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
|
53 |
+
|
54 |
+
def forward(self, hidden_states):
|
55 |
+
bsz, seq_len, h = hidden_states.shape
|
56 |
+
# print(bsz, seq_len, h)
|
57 |
+
### compute gating score
|
58 |
+
hidden_states = hidden_states.view(-1, h)
|
59 |
+
logits = F.linear(hidden_states, self.weight, None)
|
60 |
+
if self.scoring_func == 'softmax':
|
61 |
+
scores = logits.softmax(dim=-1)
|
62 |
+
else:
|
63 |
+
raise NotImplementedError(f'insupportable scoring function for MoE gating: {self.scoring_func}')
|
64 |
+
|
65 |
+
### select top-k experts
|
66 |
+
topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False)
|
67 |
+
|
68 |
+
### norm gate to sum 1
|
69 |
+
if self.top_k > 1 and self.norm_topk_prob:
|
70 |
+
denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
|
71 |
+
topk_weight = topk_weight / denominator
|
72 |
+
|
73 |
+
### expert-level computation auxiliary loss
|
74 |
+
if self.training and self.alpha > 0.0:
|
75 |
+
scores_for_aux = scores
|
76 |
+
aux_topk = self.top_k
|
77 |
+
# always compute aux loss based on the naive greedy topk method
|
78 |
+
topk_idx_for_aux_loss = topk_idx.view(bsz, -1)
|
79 |
+
if self.seq_aux:
|
80 |
+
scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1)
|
81 |
+
ce = torch.zeros(bsz, self.n_routed_experts, device=hidden_states.device)
|
82 |
+
ce.scatter_add_(1, topk_idx_for_aux_loss, torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device)).div_(seq_len * aux_topk / self.n_routed_experts)
|
83 |
+
aux_loss = (ce * scores_for_seq_aux.mean(dim = 1)).sum(dim = 1).mean() * self.alpha
|
84 |
+
else:
|
85 |
+
mask_ce = F.one_hot(topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts)
|
86 |
+
ce = mask_ce.float().mean(0)
|
87 |
+
|
88 |
+
Pi = scores_for_aux.mean(0)
|
89 |
+
fi = ce * self.n_routed_experts
|
90 |
+
aux_loss = (Pi * fi).sum() * self.alpha
|
91 |
+
save_load_balancing_loss((aux_loss, Pi, fi, self.alpha))
|
92 |
+
else:
|
93 |
+
aux_loss = None
|
94 |
+
return topk_idx, topk_weight, aux_loss
|
95 |
+
|
96 |
+
# Modified from https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
|
97 |
+
class MOEFeedForwardSwiGLU(nn.Module):
|
98 |
+
def __init__(
|
99 |
+
self,
|
100 |
+
dim: int,
|
101 |
+
hidden_dim: int,
|
102 |
+
num_routed_experts: int,
|
103 |
+
num_activated_experts: int,
|
104 |
+
):
|
105 |
+
super().__init__()
|
106 |
+
self.shared_experts = FeedForwardSwiGLU(dim, hidden_dim // 2)
|
107 |
+
self.experts = nn.ModuleList([FeedForwardSwiGLU(dim, hidden_dim) for i in range(num_routed_experts)])
|
108 |
+
self.gate = MoEGate(
|
109 |
+
embed_dim = dim,
|
110 |
+
num_routed_experts = num_routed_experts,
|
111 |
+
num_activated_experts = num_activated_experts
|
112 |
+
)
|
113 |
+
self.num_activated_experts = num_activated_experts
|
114 |
+
|
115 |
+
def forward(self, x):
|
116 |
+
wtype = x.dtype
|
117 |
+
identity = x
|
118 |
+
orig_shape = x.shape
|
119 |
+
topk_idx, topk_weight, aux_loss = self.gate(x)
|
120 |
+
x = x.view(-1, x.shape[-1])
|
121 |
+
flat_topk_idx = topk_idx.view(-1)
|
122 |
+
if self.training:
|
123 |
+
x = x.repeat_interleave(self.num_activated_experts, dim=0)
|
124 |
+
y = torch.empty_like(x, dtype=wtype)
|
125 |
+
for i, expert in enumerate(self.experts):
|
126 |
+
y[flat_topk_idx == i] = expert(x[flat_topk_idx == i]).to(dtype=wtype)
|
127 |
+
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
|
128 |
+
y = y.view(*orig_shape).to(dtype=wtype)
|
129 |
+
#y = AddAuxiliaryLoss.apply(y, aux_loss)
|
130 |
+
else:
|
131 |
+
y = self.moe_infer(x, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape)
|
132 |
+
y = y + self.shared_experts(identity)
|
133 |
+
return y
|
134 |
+
|
135 |
+
@torch.no_grad()
|
136 |
+
def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
|
137 |
+
expert_cache = torch.zeros_like(x)
|
138 |
+
idxs = flat_expert_indices.argsort()
|
139 |
+
tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0)
|
140 |
+
token_idxs = idxs // self.num_activated_experts
|
141 |
+
for i, end_idx in enumerate(tokens_per_expert):
|
142 |
+
start_idx = 0 if i == 0 else tokens_per_expert[i-1]
|
143 |
+
if start_idx == end_idx:
|
144 |
+
continue
|
145 |
+
expert = self.experts[i]
|
146 |
+
exp_token_idx = token_idxs[start_idx:end_idx]
|
147 |
+
expert_tokens = x[exp_token_idx]
|
148 |
+
expert_out = expert(expert_tokens)
|
149 |
+
expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]])
|
150 |
+
|
151 |
+
# for fp16 and other dtype
|
152 |
+
expert_cache = expert_cache.to(expert_out.dtype)
|
153 |
+
expert_cache.scatter_reduce_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out, reduce='sum')
|
154 |
+
return expert_cache
|
hi_diffusers/models/transformers/transformer_hidream_image.py
ADDED
@@ -0,0 +1,526 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, Optional, Tuple, List
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import einops
|
6 |
+
from einops import repeat
|
7 |
+
|
8 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
9 |
+
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
|
10 |
+
from diffusers.models.modeling_utils import ModelMixin
|
11 |
+
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
|
12 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
13 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
14 |
+
from ..embeddings import PatchEmbed, PooledEmbed, TimestepEmbed, EmbedND, OutEmbed
|
15 |
+
from ..attention import HiDreamAttention, FeedForwardSwiGLU
|
16 |
+
from ..attention_processor import HiDreamAttnProcessor_flashattn
|
17 |
+
from ..moe import MOEFeedForwardSwiGLU
|
18 |
+
|
19 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
20 |
+
|
21 |
+
class TextProjection(nn.Module):
|
22 |
+
def __init__(self, in_features, hidden_size):
|
23 |
+
super().__init__()
|
24 |
+
self.linear = nn.Linear(in_features=in_features, out_features=hidden_size, bias=False)
|
25 |
+
|
26 |
+
def forward(self, caption):
|
27 |
+
hidden_states = self.linear(caption)
|
28 |
+
return hidden_states
|
29 |
+
|
30 |
+
class BlockType:
|
31 |
+
TransformerBlock = 1
|
32 |
+
SingleTransformerBlock = 2
|
33 |
+
|
34 |
+
@maybe_allow_in_graph
|
35 |
+
class HiDreamImageSingleTransformerBlock(nn.Module):
|
36 |
+
def __init__(
|
37 |
+
self,
|
38 |
+
dim: int,
|
39 |
+
num_attention_heads: int,
|
40 |
+
attention_head_dim: int,
|
41 |
+
num_routed_experts: int = 4,
|
42 |
+
num_activated_experts: int = 2
|
43 |
+
):
|
44 |
+
super().__init__()
|
45 |
+
self.num_attention_heads = num_attention_heads
|
46 |
+
self.adaLN_modulation = nn.Sequential(
|
47 |
+
nn.SiLU(),
|
48 |
+
nn.Linear(dim, 6 * dim, bias=True)
|
49 |
+
)
|
50 |
+
nn.init.zeros_(self.adaLN_modulation[1].weight)
|
51 |
+
nn.init.zeros_(self.adaLN_modulation[1].bias)
|
52 |
+
|
53 |
+
# 1. Attention
|
54 |
+
self.norm1_i = nn.LayerNorm(dim, eps = 1e-06, elementwise_affine = False)
|
55 |
+
self.attn1 = HiDreamAttention(
|
56 |
+
query_dim=dim,
|
57 |
+
heads=num_attention_heads,
|
58 |
+
dim_head=attention_head_dim,
|
59 |
+
processor = HiDreamAttnProcessor_flashattn(),
|
60 |
+
single = True
|
61 |
+
)
|
62 |
+
|
63 |
+
# 3. Feed-forward
|
64 |
+
self.norm3_i = nn.LayerNorm(dim, eps = 1e-06, elementwise_affine = False)
|
65 |
+
if num_routed_experts > 0:
|
66 |
+
self.ff_i = MOEFeedForwardSwiGLU(
|
67 |
+
dim = dim,
|
68 |
+
hidden_dim = 4 * dim,
|
69 |
+
num_routed_experts = num_routed_experts,
|
70 |
+
num_activated_experts = num_activated_experts,
|
71 |
+
)
|
72 |
+
else:
|
73 |
+
self.ff_i = FeedForwardSwiGLU(dim = dim, hidden_dim = 4 * dim)
|
74 |
+
|
75 |
+
def forward(
|
76 |
+
self,
|
77 |
+
image_tokens: torch.FloatTensor,
|
78 |
+
image_tokens_masks: Optional[torch.FloatTensor] = None,
|
79 |
+
text_tokens: Optional[torch.FloatTensor] = None,
|
80 |
+
adaln_input: Optional[torch.FloatTensor] = None,
|
81 |
+
rope: torch.FloatTensor = None,
|
82 |
+
|
83 |
+
) -> torch.FloatTensor:
|
84 |
+
wtype = image_tokens.dtype
|
85 |
+
shift_msa_i, scale_msa_i, gate_msa_i, shift_mlp_i, scale_mlp_i, gate_mlp_i = \
|
86 |
+
self.adaLN_modulation(adaln_input)[:,None].chunk(6, dim=-1)
|
87 |
+
|
88 |
+
# 1. MM-Attention
|
89 |
+
norm_image_tokens = self.norm1_i(image_tokens).to(dtype=wtype)
|
90 |
+
norm_image_tokens = norm_image_tokens * (1 + scale_msa_i) + shift_msa_i
|
91 |
+
attn_output_i = self.attn1(
|
92 |
+
norm_image_tokens,
|
93 |
+
image_tokens_masks,
|
94 |
+
rope = rope,
|
95 |
+
)
|
96 |
+
image_tokens = gate_msa_i * attn_output_i + image_tokens
|
97 |
+
|
98 |
+
# 2. Feed-forward
|
99 |
+
norm_image_tokens = self.norm3_i(image_tokens).to(dtype=wtype)
|
100 |
+
norm_image_tokens = norm_image_tokens * (1 + scale_mlp_i) + shift_mlp_i
|
101 |
+
ff_output_i = gate_mlp_i * self.ff_i(norm_image_tokens.to(dtype=wtype))
|
102 |
+
image_tokens = ff_output_i + image_tokens
|
103 |
+
return image_tokens
|
104 |
+
|
105 |
+
@maybe_allow_in_graph
|
106 |
+
class HiDreamImageTransformerBlock(nn.Module):
|
107 |
+
def __init__(
|
108 |
+
self,
|
109 |
+
dim: int,
|
110 |
+
num_attention_heads: int,
|
111 |
+
attention_head_dim: int,
|
112 |
+
num_routed_experts: int = 4,
|
113 |
+
num_activated_experts: int = 2
|
114 |
+
):
|
115 |
+
super().__init__()
|
116 |
+
self.num_attention_heads = num_attention_heads
|
117 |
+
self.adaLN_modulation = nn.Sequential(
|
118 |
+
nn.SiLU(),
|
119 |
+
nn.Linear(dim, 12 * dim, bias=True)
|
120 |
+
)
|
121 |
+
nn.init.zeros_(self.adaLN_modulation[1].weight)
|
122 |
+
nn.init.zeros_(self.adaLN_modulation[1].bias)
|
123 |
+
|
124 |
+
# 1. Attention
|
125 |
+
self.norm1_i = nn.LayerNorm(dim, eps = 1e-06, elementwise_affine = False)
|
126 |
+
self.norm1_t = nn.LayerNorm(dim, eps = 1e-06, elementwise_affine = False)
|
127 |
+
self.attn1 = HiDreamAttention(
|
128 |
+
query_dim=dim,
|
129 |
+
heads=num_attention_heads,
|
130 |
+
dim_head=attention_head_dim,
|
131 |
+
processor = HiDreamAttnProcessor_flashattn(),
|
132 |
+
single = False
|
133 |
+
)
|
134 |
+
|
135 |
+
# 3. Feed-forward
|
136 |
+
self.norm3_i = nn.LayerNorm(dim, eps = 1e-06, elementwise_affine = False)
|
137 |
+
if num_routed_experts > 0:
|
138 |
+
self.ff_i = MOEFeedForwardSwiGLU(
|
139 |
+
dim = dim,
|
140 |
+
hidden_dim = 4 * dim,
|
141 |
+
num_routed_experts = num_routed_experts,
|
142 |
+
num_activated_experts = num_activated_experts,
|
143 |
+
)
|
144 |
+
else:
|
145 |
+
self.ff_i = FeedForwardSwiGLU(dim = dim, hidden_dim = 4 * dim)
|
146 |
+
self.norm3_t = nn.LayerNorm(dim, eps = 1e-06, elementwise_affine = False)
|
147 |
+
self.ff_t = FeedForwardSwiGLU(dim = dim, hidden_dim = 4 * dim)
|
148 |
+
|
149 |
+
def forward(
|
150 |
+
self,
|
151 |
+
image_tokens: torch.FloatTensor,
|
152 |
+
image_tokens_masks: Optional[torch.FloatTensor] = None,
|
153 |
+
text_tokens: Optional[torch.FloatTensor] = None,
|
154 |
+
adaln_input: Optional[torch.FloatTensor] = None,
|
155 |
+
rope: torch.FloatTensor = None,
|
156 |
+
) -> torch.FloatTensor:
|
157 |
+
wtype = image_tokens.dtype
|
158 |
+
shift_msa_i, scale_msa_i, gate_msa_i, shift_mlp_i, scale_mlp_i, gate_mlp_i, \
|
159 |
+
shift_msa_t, scale_msa_t, gate_msa_t, shift_mlp_t, scale_mlp_t, gate_mlp_t = \
|
160 |
+
self.adaLN_modulation(adaln_input)[:,None].chunk(12, dim=-1)
|
161 |
+
|
162 |
+
# 1. MM-Attention
|
163 |
+
norm_image_tokens = self.norm1_i(image_tokens).to(dtype=wtype)
|
164 |
+
norm_image_tokens = norm_image_tokens * (1 + scale_msa_i) + shift_msa_i
|
165 |
+
norm_text_tokens = self.norm1_t(text_tokens).to(dtype=wtype)
|
166 |
+
norm_text_tokens = norm_text_tokens * (1 + scale_msa_t) + shift_msa_t
|
167 |
+
|
168 |
+
attn_output_i, attn_output_t = self.attn1(
|
169 |
+
norm_image_tokens,
|
170 |
+
image_tokens_masks,
|
171 |
+
norm_text_tokens,
|
172 |
+
rope = rope,
|
173 |
+
)
|
174 |
+
|
175 |
+
image_tokens = gate_msa_i * attn_output_i + image_tokens
|
176 |
+
text_tokens = gate_msa_t * attn_output_t + text_tokens
|
177 |
+
|
178 |
+
# 2. Feed-forward
|
179 |
+
norm_image_tokens = self.norm3_i(image_tokens).to(dtype=wtype)
|
180 |
+
norm_image_tokens = norm_image_tokens * (1 + scale_mlp_i) + shift_mlp_i
|
181 |
+
norm_text_tokens = self.norm3_t(text_tokens).to(dtype=wtype)
|
182 |
+
norm_text_tokens = norm_text_tokens * (1 + scale_mlp_t) + shift_mlp_t
|
183 |
+
|
184 |
+
ff_output_i = gate_mlp_i * self.ff_i(norm_image_tokens)
|
185 |
+
ff_output_t = gate_mlp_t * self.ff_t(norm_text_tokens)
|
186 |
+
image_tokens = ff_output_i + image_tokens
|
187 |
+
text_tokens = ff_output_t + text_tokens
|
188 |
+
return image_tokens, text_tokens
|
189 |
+
|
190 |
+
@maybe_allow_in_graph
|
191 |
+
class HiDreamImageBlock(nn.Module):
|
192 |
+
def __init__(
|
193 |
+
self,
|
194 |
+
dim: int,
|
195 |
+
num_attention_heads: int,
|
196 |
+
attention_head_dim: int,
|
197 |
+
num_routed_experts: int = 4,
|
198 |
+
num_activated_experts: int = 2,
|
199 |
+
block_type: BlockType = BlockType.TransformerBlock,
|
200 |
+
):
|
201 |
+
super().__init__()
|
202 |
+
block_classes = {
|
203 |
+
BlockType.TransformerBlock: HiDreamImageTransformerBlock,
|
204 |
+
BlockType.SingleTransformerBlock: HiDreamImageSingleTransformerBlock,
|
205 |
+
}
|
206 |
+
self.block = block_classes[block_type](
|
207 |
+
dim,
|
208 |
+
num_attention_heads,
|
209 |
+
attention_head_dim,
|
210 |
+
num_routed_experts,
|
211 |
+
num_activated_experts
|
212 |
+
)
|
213 |
+
|
214 |
+
def forward(
|
215 |
+
self,
|
216 |
+
image_tokens: torch.FloatTensor,
|
217 |
+
image_tokens_masks: Optional[torch.FloatTensor] = None,
|
218 |
+
text_tokens: Optional[torch.FloatTensor] = None,
|
219 |
+
adaln_input: torch.FloatTensor = None,
|
220 |
+
rope: torch.FloatTensor = None,
|
221 |
+
) -> torch.FloatTensor:
|
222 |
+
return self.block(
|
223 |
+
image_tokens,
|
224 |
+
image_tokens_masks,
|
225 |
+
text_tokens,
|
226 |
+
adaln_input,
|
227 |
+
rope,
|
228 |
+
)
|
229 |
+
|
230 |
+
class HiDreamImageTransformer2DModel(
|
231 |
+
ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin
|
232 |
+
):
|
233 |
+
_supports_gradient_checkpointing = True
|
234 |
+
_no_split_modules = ["HiDreamImageBlock"]
|
235 |
+
|
236 |
+
@register_to_config
|
237 |
+
def __init__(
|
238 |
+
self,
|
239 |
+
patch_size: Optional[int] = None,
|
240 |
+
in_channels: int = 64,
|
241 |
+
out_channels: Optional[int] = None,
|
242 |
+
num_layers: int = 16,
|
243 |
+
num_single_layers: int = 32,
|
244 |
+
attention_head_dim: int = 128,
|
245 |
+
num_attention_heads: int = 20,
|
246 |
+
caption_channels: List[int] = None,
|
247 |
+
text_emb_dim: int = 2048,
|
248 |
+
num_routed_experts: int = 4,
|
249 |
+
num_activated_experts: int = 2,
|
250 |
+
axes_dims_rope: Tuple[int, int] = (32, 32),
|
251 |
+
max_resolution: Tuple[int, int] = (128, 128),
|
252 |
+
llama_layers: List[int] = None,
|
253 |
+
):
|
254 |
+
super().__init__()
|
255 |
+
self.out_channels = out_channels or in_channels
|
256 |
+
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
|
257 |
+
self.llama_layers = llama_layers
|
258 |
+
|
259 |
+
self.t_embedder = TimestepEmbed(self.inner_dim)
|
260 |
+
self.p_embedder = PooledEmbed(text_emb_dim, self.inner_dim)
|
261 |
+
self.x_embedder = PatchEmbed(
|
262 |
+
patch_size = patch_size,
|
263 |
+
in_channels = in_channels,
|
264 |
+
out_channels = self.inner_dim,
|
265 |
+
)
|
266 |
+
self.pe_embedder = EmbedND(theta=10000, axes_dim=axes_dims_rope)
|
267 |
+
|
268 |
+
self.double_stream_blocks = nn.ModuleList(
|
269 |
+
[
|
270 |
+
HiDreamImageBlock(
|
271 |
+
dim = self.inner_dim,
|
272 |
+
num_attention_heads = self.config.num_attention_heads,
|
273 |
+
attention_head_dim = self.config.attention_head_dim,
|
274 |
+
num_routed_experts = num_routed_experts,
|
275 |
+
num_activated_experts = num_activated_experts,
|
276 |
+
block_type = BlockType.TransformerBlock
|
277 |
+
)
|
278 |
+
for i in range(self.config.num_layers)
|
279 |
+
]
|
280 |
+
)
|
281 |
+
|
282 |
+
self.single_stream_blocks = nn.ModuleList(
|
283 |
+
[
|
284 |
+
HiDreamImageBlock(
|
285 |
+
dim = self.inner_dim,
|
286 |
+
num_attention_heads = self.config.num_attention_heads,
|
287 |
+
attention_head_dim = self.config.attention_head_dim,
|
288 |
+
num_routed_experts = num_routed_experts,
|
289 |
+
num_activated_experts = num_activated_experts,
|
290 |
+
block_type = BlockType.SingleTransformerBlock
|
291 |
+
)
|
292 |
+
for i in range(self.config.num_single_layers)
|
293 |
+
]
|
294 |
+
)
|
295 |
+
|
296 |
+
self.final_layer = OutEmbed(self.inner_dim, patch_size, self.out_channels)
|
297 |
+
|
298 |
+
caption_channels = [caption_channels[1], ] * (num_layers + num_single_layers) + [caption_channels[0], ]
|
299 |
+
caption_projection = []
|
300 |
+
for caption_channel in caption_channels:
|
301 |
+
caption_projection.append(TextProjection(in_features = caption_channel, hidden_size = self.inner_dim))
|
302 |
+
self.caption_projection = nn.ModuleList(caption_projection)
|
303 |
+
self.max_seq = max_resolution[0] * max_resolution[1] // (patch_size * patch_size)
|
304 |
+
|
305 |
+
self.gradient_checkpointing = False
|
306 |
+
|
307 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
308 |
+
if hasattr(module, "gradient_checkpointing"):
|
309 |
+
module.gradient_checkpointing = value
|
310 |
+
|
311 |
+
def expand_timesteps(self, timesteps, batch_size, device):
|
312 |
+
if not torch.is_tensor(timesteps):
|
313 |
+
is_mps = device.type == "mps"
|
314 |
+
if isinstance(timesteps, float):
|
315 |
+
dtype = torch.float32 if is_mps else torch.float64
|
316 |
+
else:
|
317 |
+
dtype = torch.int32 if is_mps else torch.int64
|
318 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=device)
|
319 |
+
elif len(timesteps.shape) == 0:
|
320 |
+
timesteps = timesteps[None].to(device)
|
321 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
322 |
+
timesteps = timesteps.expand(batch_size)
|
323 |
+
return timesteps
|
324 |
+
|
325 |
+
def unpatchify(self, x: torch.Tensor, img_sizes: List[Tuple[int, int]], is_training: bool) -> List[torch.Tensor]:
|
326 |
+
if is_training:
|
327 |
+
x = einops.rearrange(x, 'B S (p1 p2 C) -> B C S (p1 p2)', p1=self.config.patch_size, p2=self.config.patch_size)
|
328 |
+
else:
|
329 |
+
x_arr = []
|
330 |
+
for i, img_size in enumerate(img_sizes):
|
331 |
+
pH, pW = img_size
|
332 |
+
x_arr.append(
|
333 |
+
einops.rearrange(x[i, :pH*pW].reshape(1, pH, pW, -1), 'B H W (p1 p2 C) -> B C (H p1) (W p2)',
|
334 |
+
p1=self.config.patch_size, p2=self.config.patch_size)
|
335 |
+
)
|
336 |
+
x = torch.cat(x_arr, dim=0)
|
337 |
+
return x
|
338 |
+
|
339 |
+
def patchify(self, x, max_seq, img_sizes=None):
|
340 |
+
pz2 = self.config.patch_size * self.config.patch_size
|
341 |
+
if isinstance(x, torch.Tensor):
|
342 |
+
B, C = x.shape[0], x.shape[1]
|
343 |
+
device = x.device
|
344 |
+
dtype = x.dtype
|
345 |
+
else:
|
346 |
+
B, C = len(x), x[0].shape[0]
|
347 |
+
device = x[0].device
|
348 |
+
dtype = x[0].dtype
|
349 |
+
x_masks = torch.zeros((B, max_seq), dtype=dtype, device=device)
|
350 |
+
|
351 |
+
if img_sizes is not None:
|
352 |
+
for i, img_size in enumerate(img_sizes):
|
353 |
+
x_masks[i, 0:img_size[0] * img_size[1]] = 1
|
354 |
+
x = einops.rearrange(x, 'B C S p -> B S (p C)', p=pz2)
|
355 |
+
elif isinstance(x, torch.Tensor):
|
356 |
+
pH, pW = x.shape[-2] // self.config.patch_size, x.shape[-1] // self.config.patch_size
|
357 |
+
x = einops.rearrange(x, 'B C (H p1) (W p2) -> B (H W) (p1 p2 C)', p1=self.config.patch_size, p2=self.config.patch_size)
|
358 |
+
img_sizes = [[pH, pW]] * B
|
359 |
+
x_masks = None
|
360 |
+
else:
|
361 |
+
raise NotImplementedError
|
362 |
+
return x, x_masks, img_sizes
|
363 |
+
|
364 |
+
def forward(
|
365 |
+
self,
|
366 |
+
hidden_states: torch.Tensor,
|
367 |
+
timesteps: torch.LongTensor = None,
|
368 |
+
encoder_hidden_states: torch.Tensor = None,
|
369 |
+
pooled_embeds: torch.Tensor = None,
|
370 |
+
img_sizes: Optional[List[Tuple[int, int]]] = None,
|
371 |
+
img_ids: Optional[torch.Tensor] = None,
|
372 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
373 |
+
return_dict: bool = True,
|
374 |
+
):
|
375 |
+
if joint_attention_kwargs is not None:
|
376 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
377 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
378 |
+
else:
|
379 |
+
lora_scale = 1.0
|
380 |
+
|
381 |
+
if USE_PEFT_BACKEND:
|
382 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
383 |
+
scale_lora_layers(self, lora_scale)
|
384 |
+
else:
|
385 |
+
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
386 |
+
logger.warning(
|
387 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
388 |
+
)
|
389 |
+
|
390 |
+
# spatial forward
|
391 |
+
batch_size = hidden_states.shape[0]
|
392 |
+
hidden_states_type = hidden_states.dtype
|
393 |
+
|
394 |
+
# 0. time
|
395 |
+
timesteps = self.expand_timesteps(timesteps, batch_size, hidden_states.device)
|
396 |
+
timesteps = self.t_embedder(timesteps, hidden_states_type)
|
397 |
+
p_embedder = self.p_embedder(pooled_embeds)
|
398 |
+
adaln_input = timesteps + p_embedder
|
399 |
+
|
400 |
+
hidden_states, image_tokens_masks, img_sizes = self.patchify(hidden_states, self.max_seq, img_sizes)
|
401 |
+
if image_tokens_masks is None:
|
402 |
+
pH, pW = img_sizes[0]
|
403 |
+
img_ids = torch.zeros(pH, pW, 3, device=hidden_states.device)
|
404 |
+
img_ids[..., 1] = img_ids[..., 1] + torch.arange(pH, device=hidden_states.device)[:, None]
|
405 |
+
img_ids[..., 2] = img_ids[..., 2] + torch.arange(pW, device=hidden_states.device)[None, :]
|
406 |
+
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=batch_size)
|
407 |
+
hidden_states = self.x_embedder(hidden_states)
|
408 |
+
|
409 |
+
T5_encoder_hidden_states = encoder_hidden_states[0]
|
410 |
+
encoder_hidden_states = encoder_hidden_states[-1]
|
411 |
+
encoder_hidden_states = [encoder_hidden_states[k] for k in self.llama_layers]
|
412 |
+
|
413 |
+
if self.caption_projection is not None:
|
414 |
+
new_encoder_hidden_states = []
|
415 |
+
for i, enc_hidden_state in enumerate(encoder_hidden_states):
|
416 |
+
enc_hidden_state = self.caption_projection[i](enc_hidden_state)
|
417 |
+
enc_hidden_state = enc_hidden_state.view(batch_size, -1, hidden_states.shape[-1])
|
418 |
+
new_encoder_hidden_states.append(enc_hidden_state)
|
419 |
+
encoder_hidden_states = new_encoder_hidden_states
|
420 |
+
T5_encoder_hidden_states = self.caption_projection[-1](T5_encoder_hidden_states)
|
421 |
+
T5_encoder_hidden_states = T5_encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
|
422 |
+
encoder_hidden_states.append(T5_encoder_hidden_states)
|
423 |
+
|
424 |
+
txt_ids = torch.zeros(
|
425 |
+
batch_size,
|
426 |
+
encoder_hidden_states[-1].shape[1] + encoder_hidden_states[-2].shape[1] + encoder_hidden_states[0].shape[1],
|
427 |
+
3,
|
428 |
+
device=img_ids.device, dtype=img_ids.dtype
|
429 |
+
)
|
430 |
+
ids = torch.cat((img_ids, txt_ids), dim=1)
|
431 |
+
rope = self.pe_embedder(ids)
|
432 |
+
|
433 |
+
# 2. Blocks
|
434 |
+
block_id = 0
|
435 |
+
initial_encoder_hidden_states = torch.cat([encoder_hidden_states[-1], encoder_hidden_states[-2]], dim=1)
|
436 |
+
initial_encoder_hidden_states_seq_len = initial_encoder_hidden_states.shape[1]
|
437 |
+
for bid, block in enumerate(self.double_stream_blocks):
|
438 |
+
cur_llama31_encoder_hidden_states = encoder_hidden_states[block_id]
|
439 |
+
cur_encoder_hidden_states = torch.cat([initial_encoder_hidden_states, cur_llama31_encoder_hidden_states], dim=1)
|
440 |
+
if self.training and self.gradient_checkpointing:
|
441 |
+
def create_custom_forward(module, return_dict=None):
|
442 |
+
def custom_forward(*inputs):
|
443 |
+
if return_dict is not None:
|
444 |
+
return module(*inputs, return_dict=return_dict)
|
445 |
+
else:
|
446 |
+
return module(*inputs)
|
447 |
+
return custom_forward
|
448 |
+
|
449 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
450 |
+
hidden_states, initial_encoder_hidden_states = torch.utils.checkpoint.checkpoint(
|
451 |
+
create_custom_forward(block),
|
452 |
+
hidden_states,
|
453 |
+
image_tokens_masks,
|
454 |
+
cur_encoder_hidden_states,
|
455 |
+
adaln_input,
|
456 |
+
rope,
|
457 |
+
**ckpt_kwargs,
|
458 |
+
)
|
459 |
+
else:
|
460 |
+
hidden_states, initial_encoder_hidden_states = block(
|
461 |
+
image_tokens = hidden_states,
|
462 |
+
image_tokens_masks = image_tokens_masks,
|
463 |
+
text_tokens = cur_encoder_hidden_states,
|
464 |
+
adaln_input = adaln_input,
|
465 |
+
rope = rope,
|
466 |
+
)
|
467 |
+
initial_encoder_hidden_states = initial_encoder_hidden_states[:, :initial_encoder_hidden_states_seq_len]
|
468 |
+
block_id += 1
|
469 |
+
|
470 |
+
image_tokens_seq_len = hidden_states.shape[1]
|
471 |
+
hidden_states = torch.cat([hidden_states, initial_encoder_hidden_states], dim=1)
|
472 |
+
hidden_states_seq_len = hidden_states.shape[1]
|
473 |
+
if image_tokens_masks is not None:
|
474 |
+
encoder_attention_mask_ones = torch.ones(
|
475 |
+
(batch_size, initial_encoder_hidden_states.shape[1] + cur_llama31_encoder_hidden_states.shape[1]),
|
476 |
+
device=image_tokens_masks.device, dtype=image_tokens_masks.dtype
|
477 |
+
)
|
478 |
+
image_tokens_masks = torch.cat([image_tokens_masks, encoder_attention_mask_ones], dim=1)
|
479 |
+
|
480 |
+
for bid, block in enumerate(self.single_stream_blocks):
|
481 |
+
cur_llama31_encoder_hidden_states = encoder_hidden_states[block_id]
|
482 |
+
hidden_states = torch.cat([hidden_states, cur_llama31_encoder_hidden_states], dim=1)
|
483 |
+
if self.training and self.gradient_checkpointing:
|
484 |
+
def create_custom_forward(module, return_dict=None):
|
485 |
+
def custom_forward(*inputs):
|
486 |
+
if return_dict is not None:
|
487 |
+
return module(*inputs, return_dict=return_dict)
|
488 |
+
else:
|
489 |
+
return module(*inputs)
|
490 |
+
return custom_forward
|
491 |
+
|
492 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
493 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
494 |
+
create_custom_forward(block),
|
495 |
+
hidden_states,
|
496 |
+
image_tokens_masks,
|
497 |
+
None,
|
498 |
+
adaln_input,
|
499 |
+
rope,
|
500 |
+
**ckpt_kwargs,
|
501 |
+
)
|
502 |
+
else:
|
503 |
+
hidden_states = block(
|
504 |
+
image_tokens = hidden_states,
|
505 |
+
image_tokens_masks = image_tokens_masks,
|
506 |
+
text_tokens = None,
|
507 |
+
adaln_input = adaln_input,
|
508 |
+
rope = rope,
|
509 |
+
)
|
510 |
+
hidden_states = hidden_states[:, :hidden_states_seq_len]
|
511 |
+
block_id += 1
|
512 |
+
|
513 |
+
hidden_states = hidden_states[:, :image_tokens_seq_len, ...]
|
514 |
+
output = self.final_layer(hidden_states, adaln_input)
|
515 |
+
output = self.unpatchify(output, img_sizes, self.training)
|
516 |
+
if image_tokens_masks is not None:
|
517 |
+
image_tokens_masks = image_tokens_masks[:, :image_tokens_seq_len]
|
518 |
+
|
519 |
+
if USE_PEFT_BACKEND:
|
520 |
+
# remove `lora_scale` from each PEFT layer
|
521 |
+
unscale_lora_layers(self, lora_scale)
|
522 |
+
|
523 |
+
if not return_dict:
|
524 |
+
return (output, image_tokens_masks)
|
525 |
+
return Transformer2DModelOutput(sample=output, mask=image_tokens_masks)
|
526 |
+
|
hi_diffusers/pipelines/hidream_image/pipeline_hidream_image.py
ADDED
@@ -0,0 +1,733 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
3 |
+
import math
|
4 |
+
import einops
|
5 |
+
import torch
|
6 |
+
from transformers import (
|
7 |
+
CLIPTextModelWithProjection,
|
8 |
+
CLIPTokenizer,
|
9 |
+
T5EncoderModel,
|
10 |
+
T5Tokenizer,
|
11 |
+
LlamaForCausalLM,
|
12 |
+
PreTrainedTokenizerFast
|
13 |
+
)
|
14 |
+
|
15 |
+
from diffusers.image_processor import VaeImageProcessor
|
16 |
+
from diffusers.loaders import FromSingleFileMixin
|
17 |
+
from diffusers.models.autoencoders import AutoencoderKL
|
18 |
+
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
19 |
+
from diffusers.utils import (
|
20 |
+
USE_PEFT_BACKEND,
|
21 |
+
is_torch_xla_available,
|
22 |
+
logging,
|
23 |
+
)
|
24 |
+
from diffusers.utils.torch_utils import randn_tensor
|
25 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
26 |
+
from .pipeline_output import HiDreamImagePipelineOutput
|
27 |
+
from ...models.transformers.transformer_hidream_image import HiDreamImageTransformer2DModel
|
28 |
+
from ...schedulers.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
29 |
+
|
30 |
+
if is_torch_xla_available():
|
31 |
+
import torch_xla.core.xla_model as xm
|
32 |
+
|
33 |
+
XLA_AVAILABLE = True
|
34 |
+
else:
|
35 |
+
XLA_AVAILABLE = False
|
36 |
+
|
37 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
38 |
+
|
39 |
+
# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
|
40 |
+
def calculate_shift(
|
41 |
+
image_seq_len,
|
42 |
+
base_seq_len: int = 256,
|
43 |
+
max_seq_len: int = 4096,
|
44 |
+
base_shift: float = 0.5,
|
45 |
+
max_shift: float = 1.15,
|
46 |
+
):
|
47 |
+
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
48 |
+
b = base_shift - m * base_seq_len
|
49 |
+
mu = image_seq_len * m + b
|
50 |
+
return mu
|
51 |
+
|
52 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
53 |
+
def retrieve_timesteps(
|
54 |
+
scheduler,
|
55 |
+
num_inference_steps: Optional[int] = None,
|
56 |
+
device: Optional[Union[str, torch.device]] = None,
|
57 |
+
timesteps: Optional[List[int]] = None,
|
58 |
+
sigmas: Optional[List[float]] = None,
|
59 |
+
**kwargs,
|
60 |
+
):
|
61 |
+
r"""
|
62 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
63 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
scheduler (`SchedulerMixin`):
|
67 |
+
The scheduler to get timesteps from.
|
68 |
+
num_inference_steps (`int`):
|
69 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
70 |
+
must be `None`.
|
71 |
+
device (`str` or `torch.device`, *optional*):
|
72 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
73 |
+
timesteps (`List[int]`, *optional*):
|
74 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
75 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
76 |
+
sigmas (`List[float]`, *optional*):
|
77 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
78 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
79 |
+
|
80 |
+
Returns:
|
81 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
82 |
+
second element is the number of inference steps.
|
83 |
+
"""
|
84 |
+
if timesteps is not None and sigmas is not None:
|
85 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
86 |
+
if timesteps is not None:
|
87 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
88 |
+
if not accepts_timesteps:
|
89 |
+
raise ValueError(
|
90 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
91 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
92 |
+
)
|
93 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
94 |
+
timesteps = scheduler.timesteps
|
95 |
+
num_inference_steps = len(timesteps)
|
96 |
+
elif sigmas is not None:
|
97 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
98 |
+
if not accept_sigmas:
|
99 |
+
raise ValueError(
|
100 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
101 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
102 |
+
)
|
103 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
104 |
+
timesteps = scheduler.timesteps
|
105 |
+
num_inference_steps = len(timesteps)
|
106 |
+
else:
|
107 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
108 |
+
timesteps = scheduler.timesteps
|
109 |
+
return timesteps, num_inference_steps
|
110 |
+
|
111 |
+
class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
112 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder_3->text_encoder_4->image_encoder->transformer->vae"
|
113 |
+
_optional_components = ["image_encoder", "feature_extractor"]
|
114 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds"]
|
115 |
+
|
116 |
+
def __init__(
|
117 |
+
self,
|
118 |
+
scheduler: FlowMatchEulerDiscreteScheduler,
|
119 |
+
vae: AutoencoderKL,
|
120 |
+
text_encoder: CLIPTextModelWithProjection,
|
121 |
+
tokenizer: CLIPTokenizer,
|
122 |
+
text_encoder_2: CLIPTextModelWithProjection,
|
123 |
+
tokenizer_2: CLIPTokenizer,
|
124 |
+
text_encoder_3: T5EncoderModel,
|
125 |
+
tokenizer_3: T5Tokenizer,
|
126 |
+
text_encoder_4: LlamaForCausalLM,
|
127 |
+
tokenizer_4: PreTrainedTokenizerFast,
|
128 |
+
):
|
129 |
+
super().__init__()
|
130 |
+
|
131 |
+
self.register_modules(
|
132 |
+
vae=vae,
|
133 |
+
text_encoder=text_encoder,
|
134 |
+
text_encoder_2=text_encoder_2,
|
135 |
+
text_encoder_3=text_encoder_3,
|
136 |
+
text_encoder_4=text_encoder_4,
|
137 |
+
tokenizer=tokenizer,
|
138 |
+
tokenizer_2=tokenizer_2,
|
139 |
+
tokenizer_3=tokenizer_3,
|
140 |
+
tokenizer_4=tokenizer_4,
|
141 |
+
scheduler=scheduler,
|
142 |
+
)
|
143 |
+
self.vae_scale_factor = (
|
144 |
+
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
|
145 |
+
)
|
146 |
+
# HiDreamImage latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
|
147 |
+
# by the patch size. So the vae scale factor is multiplied by the patch size to account for this
|
148 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
|
149 |
+
self.default_sample_size = 128
|
150 |
+
self.tokenizer_4.pad_token = self.tokenizer_4.eos_token
|
151 |
+
|
152 |
+
def _get_t5_prompt_embeds(
|
153 |
+
self,
|
154 |
+
prompt: Union[str, List[str]] = None,
|
155 |
+
num_images_per_prompt: int = 1,
|
156 |
+
max_sequence_length: int = 128,
|
157 |
+
device: Optional[torch.device] = None,
|
158 |
+
dtype: Optional[torch.dtype] = None,
|
159 |
+
):
|
160 |
+
device = device or self._execution_device
|
161 |
+
dtype = dtype or self.text_encoder_3.dtype
|
162 |
+
|
163 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
164 |
+
batch_size = len(prompt)
|
165 |
+
|
166 |
+
text_inputs = self.tokenizer_3(
|
167 |
+
prompt,
|
168 |
+
padding="max_length",
|
169 |
+
max_length=min(max_sequence_length, self.tokenizer_3.model_max_length),
|
170 |
+
truncation=True,
|
171 |
+
add_special_tokens=True,
|
172 |
+
return_tensors="pt",
|
173 |
+
)
|
174 |
+
text_input_ids = text_inputs.input_ids
|
175 |
+
attention_mask = text_inputs.attention_mask
|
176 |
+
untruncated_ids = self.tokenizer_3(prompt, padding="longest", return_tensors="pt").input_ids
|
177 |
+
|
178 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
179 |
+
removed_text = self.tokenizer_3.batch_decode(untruncated_ids[:, min(max_sequence_length, self.tokenizer_3.model_max_length) - 1 : -1])
|
180 |
+
logger.warning(
|
181 |
+
"The following part of your input was truncated because `max_sequence_length` is set to "
|
182 |
+
f" {min(max_sequence_length, self.tokenizer_3.model_max_length)} tokens: {removed_text}"
|
183 |
+
)
|
184 |
+
|
185 |
+
prompt_embeds = self.text_encoder_3(text_input_ids.to(device), attention_mask=attention_mask.to(device))[0]
|
186 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
187 |
+
_, seq_len, _ = prompt_embeds.shape
|
188 |
+
|
189 |
+
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
190 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
191 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
192 |
+
return prompt_embeds
|
193 |
+
|
194 |
+
def _get_clip_prompt_embeds(
|
195 |
+
self,
|
196 |
+
tokenizer,
|
197 |
+
text_encoder,
|
198 |
+
prompt: Union[str, List[str]],
|
199 |
+
num_images_per_prompt: int = 1,
|
200 |
+
max_sequence_length: int = 128,
|
201 |
+
device: Optional[torch.device] = None,
|
202 |
+
dtype: Optional[torch.dtype] = None,
|
203 |
+
):
|
204 |
+
device = device or self._execution_device
|
205 |
+
dtype = dtype or text_encoder.dtype
|
206 |
+
|
207 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
208 |
+
batch_size = len(prompt)
|
209 |
+
|
210 |
+
text_inputs = tokenizer(
|
211 |
+
prompt,
|
212 |
+
padding="max_length",
|
213 |
+
max_length=min(max_sequence_length, 218),
|
214 |
+
truncation=True,
|
215 |
+
return_tensors="pt",
|
216 |
+
)
|
217 |
+
|
218 |
+
text_input_ids = text_inputs.input_ids
|
219 |
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
220 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
221 |
+
removed_text = tokenizer.batch_decode(untruncated_ids[:, 218 - 1 : -1])
|
222 |
+
logger.warning(
|
223 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
224 |
+
f" {218} tokens: {removed_text}"
|
225 |
+
)
|
226 |
+
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
227 |
+
|
228 |
+
# Use pooled output of CLIPTextModel
|
229 |
+
prompt_embeds = prompt_embeds[0]
|
230 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
231 |
+
|
232 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
233 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
|
234 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
235 |
+
|
236 |
+
return prompt_embeds
|
237 |
+
|
238 |
+
def _get_llama3_prompt_embeds(
|
239 |
+
self,
|
240 |
+
prompt: Union[str, List[str]] = None,
|
241 |
+
num_images_per_prompt: int = 1,
|
242 |
+
max_sequence_length: int = 128,
|
243 |
+
device: Optional[torch.device] = None,
|
244 |
+
dtype: Optional[torch.dtype] = None,
|
245 |
+
):
|
246 |
+
device = device or self._execution_device
|
247 |
+
dtype = dtype or self.text_encoder_4.dtype
|
248 |
+
|
249 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
250 |
+
batch_size = len(prompt)
|
251 |
+
|
252 |
+
text_inputs = self.tokenizer_4(
|
253 |
+
prompt,
|
254 |
+
padding="max_length",
|
255 |
+
max_length=min(max_sequence_length, self.tokenizer_4.model_max_length),
|
256 |
+
truncation=True,
|
257 |
+
add_special_tokens=True,
|
258 |
+
return_tensors="pt",
|
259 |
+
)
|
260 |
+
text_input_ids = text_inputs.input_ids
|
261 |
+
attention_mask = text_inputs.attention_mask
|
262 |
+
untruncated_ids = self.tokenizer_4(prompt, padding="longest", return_tensors="pt").input_ids
|
263 |
+
|
264 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
265 |
+
removed_text = self.tokenizer_4.batch_decode(untruncated_ids[:, min(max_sequence_length, self.tokenizer_4.model_max_length) - 1 : -1])
|
266 |
+
logger.warning(
|
267 |
+
"The following part of your input was truncated because `max_sequence_length` is set to "
|
268 |
+
f" {min(max_sequence_length, self.tokenizer_4.model_max_length)} tokens: {removed_text}"
|
269 |
+
)
|
270 |
+
|
271 |
+
outputs = self.text_encoder_4(
|
272 |
+
text_input_ids.to(device),
|
273 |
+
attention_mask=attention_mask.to(device),
|
274 |
+
output_hidden_states=True,
|
275 |
+
output_attentions=True
|
276 |
+
)
|
277 |
+
|
278 |
+
prompt_embeds = outputs.hidden_states[1:]
|
279 |
+
prompt_embeds = torch.stack(prompt_embeds, dim=0)
|
280 |
+
_, _, seq_len, dim = prompt_embeds.shape
|
281 |
+
|
282 |
+
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
283 |
+
prompt_embeds = prompt_embeds.repeat(1, 1, num_images_per_prompt, 1)
|
284 |
+
prompt_embeds = prompt_embeds.view(-1, batch_size * num_images_per_prompt, seq_len, dim)
|
285 |
+
return prompt_embeds
|
286 |
+
|
287 |
+
def encode_prompt(
|
288 |
+
self,
|
289 |
+
prompt: Union[str, List[str]],
|
290 |
+
prompt_2: Union[str, List[str]],
|
291 |
+
prompt_3: Union[str, List[str]],
|
292 |
+
prompt_4: Union[str, List[str]],
|
293 |
+
device: Optional[torch.device] = None,
|
294 |
+
dtype: Optional[torch.dtype] = None,
|
295 |
+
num_images_per_prompt: int = 1,
|
296 |
+
do_classifier_free_guidance: bool = True,
|
297 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
298 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
299 |
+
negative_prompt_3: Optional[Union[str, List[str]]] = None,
|
300 |
+
negative_prompt_4: Optional[Union[str, List[str]]] = None,
|
301 |
+
prompt_embeds: Optional[List[torch.FloatTensor]] = None,
|
302 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
303 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
304 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
305 |
+
max_sequence_length: int = 128,
|
306 |
+
lora_scale: Optional[float] = None,
|
307 |
+
):
|
308 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
309 |
+
if prompt is not None:
|
310 |
+
batch_size = len(prompt)
|
311 |
+
else:
|
312 |
+
batch_size = prompt_embeds.shape[0]
|
313 |
+
|
314 |
+
prompt_embeds, pooled_prompt_embeds = self._encode_prompt(
|
315 |
+
prompt = prompt,
|
316 |
+
prompt_2 = prompt_2,
|
317 |
+
prompt_3 = prompt_3,
|
318 |
+
prompt_4 = prompt_4,
|
319 |
+
device = device,
|
320 |
+
dtype = dtype,
|
321 |
+
num_images_per_prompt = num_images_per_prompt,
|
322 |
+
prompt_embeds = prompt_embeds,
|
323 |
+
pooled_prompt_embeds = pooled_prompt_embeds,
|
324 |
+
max_sequence_length = max_sequence_length,
|
325 |
+
)
|
326 |
+
|
327 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
328 |
+
negative_prompt = negative_prompt or ""
|
329 |
+
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
330 |
+
negative_prompt_3 = negative_prompt_3 or negative_prompt
|
331 |
+
negative_prompt_4 = negative_prompt_4 or negative_prompt
|
332 |
+
|
333 |
+
# normalize str to list
|
334 |
+
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
335 |
+
negative_prompt_2 = (
|
336 |
+
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
|
337 |
+
)
|
338 |
+
negative_prompt_3 = (
|
339 |
+
batch_size * [negative_prompt_3] if isinstance(negative_prompt_3, str) else negative_prompt_3
|
340 |
+
)
|
341 |
+
negative_prompt_4 = (
|
342 |
+
batch_size * [negative_prompt_4] if isinstance(negative_prompt_4, str) else negative_prompt_4
|
343 |
+
)
|
344 |
+
|
345 |
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
346 |
+
raise TypeError(
|
347 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
348 |
+
f" {type(prompt)}."
|
349 |
+
)
|
350 |
+
elif batch_size != len(negative_prompt):
|
351 |
+
raise ValueError(
|
352 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
353 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
354 |
+
" the batch size of `prompt`."
|
355 |
+
)
|
356 |
+
|
357 |
+
negative_prompt_embeds, negative_pooled_prompt_embeds = self._encode_prompt(
|
358 |
+
prompt = negative_prompt,
|
359 |
+
prompt_2 = negative_prompt_2,
|
360 |
+
prompt_3 = negative_prompt_3,
|
361 |
+
prompt_4 = negative_prompt_4,
|
362 |
+
device = device,
|
363 |
+
dtype = dtype,
|
364 |
+
num_images_per_prompt = num_images_per_prompt,
|
365 |
+
prompt_embeds = negative_prompt_embeds,
|
366 |
+
pooled_prompt_embeds = negative_pooled_prompt_embeds,
|
367 |
+
max_sequence_length = max_sequence_length,
|
368 |
+
)
|
369 |
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
370 |
+
|
371 |
+
def _encode_prompt(
|
372 |
+
self,
|
373 |
+
prompt: Union[str, List[str]],
|
374 |
+
prompt_2: Union[str, List[str]],
|
375 |
+
prompt_3: Union[str, List[str]],
|
376 |
+
prompt_4: Union[str, List[str]],
|
377 |
+
device: Optional[torch.device] = None,
|
378 |
+
dtype: Optional[torch.dtype] = None,
|
379 |
+
num_images_per_prompt: int = 1,
|
380 |
+
prompt_embeds: Optional[List[torch.FloatTensor]] = None,
|
381 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
382 |
+
max_sequence_length: int = 128,
|
383 |
+
):
|
384 |
+
device = device or self._execution_device
|
385 |
+
|
386 |
+
if prompt_embeds is None:
|
387 |
+
prompt_2 = prompt_2 or prompt
|
388 |
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
389 |
+
|
390 |
+
prompt_3 = prompt_3 or prompt
|
391 |
+
prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3
|
392 |
+
|
393 |
+
prompt_4 = prompt_4 or prompt
|
394 |
+
prompt_4 = [prompt_4] if isinstance(prompt_4, str) else prompt_4
|
395 |
+
|
396 |
+
pooled_prompt_embeds_1 = self._get_clip_prompt_embeds(
|
397 |
+
self.tokenizer,
|
398 |
+
self.text_encoder,
|
399 |
+
prompt = prompt,
|
400 |
+
num_images_per_prompt = num_images_per_prompt,
|
401 |
+
max_sequence_length = max_sequence_length,
|
402 |
+
device = device,
|
403 |
+
dtype = dtype,
|
404 |
+
)
|
405 |
+
|
406 |
+
pooled_prompt_embeds_2 = self._get_clip_prompt_embeds(
|
407 |
+
self.tokenizer_2,
|
408 |
+
self.text_encoder_2,
|
409 |
+
prompt = prompt_2,
|
410 |
+
num_images_per_prompt = num_images_per_prompt,
|
411 |
+
max_sequence_length = max_sequence_length,
|
412 |
+
device = device,
|
413 |
+
dtype = dtype,
|
414 |
+
)
|
415 |
+
|
416 |
+
pooled_prompt_embeds = torch.cat([pooled_prompt_embeds_1, pooled_prompt_embeds_2], dim=-1)
|
417 |
+
|
418 |
+
t5_prompt_embeds = self._get_t5_prompt_embeds(
|
419 |
+
prompt = prompt_3,
|
420 |
+
num_images_per_prompt = num_images_per_prompt,
|
421 |
+
max_sequence_length = max_sequence_length,
|
422 |
+
device = device,
|
423 |
+
dtype = dtype
|
424 |
+
)
|
425 |
+
llama3_prompt_embeds = self._get_llama3_prompt_embeds(
|
426 |
+
prompt = prompt_4,
|
427 |
+
num_images_per_prompt = num_images_per_prompt,
|
428 |
+
max_sequence_length = max_sequence_length,
|
429 |
+
device = device,
|
430 |
+
dtype = dtype
|
431 |
+
)
|
432 |
+
prompt_embeds = [t5_prompt_embeds, llama3_prompt_embeds]
|
433 |
+
|
434 |
+
return prompt_embeds, pooled_prompt_embeds
|
435 |
+
|
436 |
+
def enable_vae_slicing(self):
|
437 |
+
r"""
|
438 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
439 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
440 |
+
"""
|
441 |
+
self.vae.enable_slicing()
|
442 |
+
|
443 |
+
def disable_vae_slicing(self):
|
444 |
+
r"""
|
445 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
446 |
+
computing decoding in one step.
|
447 |
+
"""
|
448 |
+
self.vae.disable_slicing()
|
449 |
+
|
450 |
+
def enable_vae_tiling(self):
|
451 |
+
r"""
|
452 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
453 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
454 |
+
processing larger images.
|
455 |
+
"""
|
456 |
+
self.vae.enable_tiling()
|
457 |
+
|
458 |
+
def disable_vae_tiling(self):
|
459 |
+
r"""
|
460 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
461 |
+
computing decoding in one step.
|
462 |
+
"""
|
463 |
+
self.vae.disable_tiling()
|
464 |
+
|
465 |
+
def prepare_latents(
|
466 |
+
self,
|
467 |
+
batch_size,
|
468 |
+
num_channels_latents,
|
469 |
+
height,
|
470 |
+
width,
|
471 |
+
dtype,
|
472 |
+
device,
|
473 |
+
generator,
|
474 |
+
latents=None,
|
475 |
+
):
|
476 |
+
# VAE applies 8x compression on images but we must also account for packing which requires
|
477 |
+
# latent height and width to be divisible by 2.
|
478 |
+
height = 2 * (int(height) // (self.vae_scale_factor * 2))
|
479 |
+
width = 2 * (int(width) // (self.vae_scale_factor * 2))
|
480 |
+
|
481 |
+
shape = (batch_size, num_channels_latents, height, width)
|
482 |
+
|
483 |
+
if latents is None:
|
484 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
485 |
+
else:
|
486 |
+
if latents.shape != shape:
|
487 |
+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
|
488 |
+
latents = latents.to(device)
|
489 |
+
return latents
|
490 |
+
|
491 |
+
@property
|
492 |
+
def guidance_scale(self):
|
493 |
+
return self._guidance_scale
|
494 |
+
|
495 |
+
@property
|
496 |
+
def do_classifier_free_guidance(self):
|
497 |
+
return self._guidance_scale > 1
|
498 |
+
|
499 |
+
@property
|
500 |
+
def joint_attention_kwargs(self):
|
501 |
+
return self._joint_attention_kwargs
|
502 |
+
|
503 |
+
@property
|
504 |
+
def num_timesteps(self):
|
505 |
+
return self._num_timesteps
|
506 |
+
|
507 |
+
@property
|
508 |
+
def interrupt(self):
|
509 |
+
return self._interrupt
|
510 |
+
|
511 |
+
@torch.no_grad()
|
512 |
+
def __call__(
|
513 |
+
self,
|
514 |
+
prompt: Union[str, List[str]] = None,
|
515 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
516 |
+
prompt_3: Optional[Union[str, List[str]]] = None,
|
517 |
+
prompt_4: Optional[Union[str, List[str]]] = None,
|
518 |
+
height: Optional[int] = None,
|
519 |
+
width: Optional[int] = None,
|
520 |
+
num_inference_steps: int = 50,
|
521 |
+
sigmas: Optional[List[float]] = None,
|
522 |
+
guidance_scale: float = 5.0,
|
523 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
524 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
525 |
+
negative_prompt_3: Optional[Union[str, List[str]]] = None,
|
526 |
+
negative_prompt_4: Optional[Union[str, List[str]]] = None,
|
527 |
+
num_images_per_prompt: Optional[int] = 1,
|
528 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
529 |
+
latents: Optional[torch.FloatTensor] = None,
|
530 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
531 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
532 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
533 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
534 |
+
output_type: Optional[str] = "pil",
|
535 |
+
return_dict: bool = True,
|
536 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
537 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
538 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
539 |
+
max_sequence_length: int = 128,
|
540 |
+
):
|
541 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
542 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
543 |
+
|
544 |
+
division = self.vae_scale_factor * 2
|
545 |
+
S_max = (self.default_sample_size * self.vae_scale_factor) ** 2
|
546 |
+
scale = S_max / (width * height)
|
547 |
+
scale = math.sqrt(scale)
|
548 |
+
width, height = int(width * scale // division * division), int(height * scale // division * division)
|
549 |
+
|
550 |
+
self._guidance_scale = guidance_scale
|
551 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
552 |
+
self._interrupt = False
|
553 |
+
|
554 |
+
# 2. Define call parameters
|
555 |
+
if prompt is not None and isinstance(prompt, str):
|
556 |
+
batch_size = 1
|
557 |
+
elif prompt is not None and isinstance(prompt, list):
|
558 |
+
batch_size = len(prompt)
|
559 |
+
else:
|
560 |
+
batch_size = prompt_embeds.shape[0]
|
561 |
+
|
562 |
+
device = self._execution_device
|
563 |
+
|
564 |
+
lora_scale = (
|
565 |
+
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
566 |
+
)
|
567 |
+
(
|
568 |
+
prompt_embeds,
|
569 |
+
negative_prompt_embeds,
|
570 |
+
pooled_prompt_embeds,
|
571 |
+
negative_pooled_prompt_embeds,
|
572 |
+
) = self.encode_prompt(
|
573 |
+
prompt=prompt,
|
574 |
+
prompt_2=prompt_2,
|
575 |
+
prompt_3=prompt_3,
|
576 |
+
prompt_4=prompt_4,
|
577 |
+
negative_prompt=negative_prompt,
|
578 |
+
negative_prompt_2=negative_prompt_2,
|
579 |
+
negative_prompt_3=negative_prompt_3,
|
580 |
+
negative_prompt_4=negative_prompt_4,
|
581 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
582 |
+
prompt_embeds=prompt_embeds,
|
583 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
584 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
585 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
586 |
+
device=device,
|
587 |
+
num_images_per_prompt=num_images_per_prompt,
|
588 |
+
max_sequence_length=max_sequence_length,
|
589 |
+
lora_scale=lora_scale,
|
590 |
+
)
|
591 |
+
|
592 |
+
if self.do_classifier_free_guidance:
|
593 |
+
prompt_embeds_arr = []
|
594 |
+
for n, p in zip(negative_prompt_embeds, prompt_embeds):
|
595 |
+
if len(n.shape) == 3:
|
596 |
+
prompt_embeds_arr.append(torch.cat([n, p], dim=0))
|
597 |
+
else:
|
598 |
+
prompt_embeds_arr.append(torch.cat([n, p], dim=1))
|
599 |
+
prompt_embeds = prompt_embeds_arr
|
600 |
+
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
|
601 |
+
|
602 |
+
# 4. Prepare latent variables
|
603 |
+
num_channels_latents = self.transformer.config.in_channels
|
604 |
+
latents = self.prepare_latents(
|
605 |
+
batch_size * num_images_per_prompt,
|
606 |
+
num_channels_latents,
|
607 |
+
height,
|
608 |
+
width,
|
609 |
+
pooled_prompt_embeds.dtype,
|
610 |
+
device,
|
611 |
+
generator,
|
612 |
+
latents,
|
613 |
+
)
|
614 |
+
|
615 |
+
if latents.shape[-2] != latents.shape[-1]:
|
616 |
+
B, C, H, W = latents.shape
|
617 |
+
pH, pW = H // self.transformer.config.patch_size, W // self.transformer.config.patch_size
|
618 |
+
|
619 |
+
img_sizes = torch.tensor([pH, pW], dtype=torch.int64).reshape(-1)
|
620 |
+
img_ids = torch.zeros(pH, pW, 3)
|
621 |
+
img_ids[..., 1] = img_ids[..., 1] + torch.arange(pH)[:, None]
|
622 |
+
img_ids[..., 2] = img_ids[..., 2] + torch.arange(pW)[None, :]
|
623 |
+
img_ids = img_ids.reshape(pH * pW, -1)
|
624 |
+
img_ids_pad = torch.zeros(self.transformer.max_seq, 3)
|
625 |
+
img_ids_pad[:pH*pW, :] = img_ids
|
626 |
+
|
627 |
+
img_sizes = img_sizes.unsqueeze(0).to(latents.device)
|
628 |
+
img_ids = img_ids_pad.unsqueeze(0).to(latents.device)
|
629 |
+
if self.do_classifier_free_guidance:
|
630 |
+
img_sizes = img_sizes.repeat(2 * B, 1)
|
631 |
+
img_ids = img_ids.repeat(2 * B, 1, 1)
|
632 |
+
else:
|
633 |
+
img_sizes = img_ids = None
|
634 |
+
|
635 |
+
# 5. Prepare timesteps
|
636 |
+
mu = calculate_shift(self.transformer.max_seq)
|
637 |
+
scheduler_kwargs = {"mu": mu}
|
638 |
+
if isinstance(self.scheduler, FlowUniPCMultistepScheduler):
|
639 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device, shift=math.exp(mu))
|
640 |
+
timesteps = self.scheduler.timesteps
|
641 |
+
else:
|
642 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
643 |
+
self.scheduler,
|
644 |
+
num_inference_steps,
|
645 |
+
device,
|
646 |
+
sigmas=sigmas,
|
647 |
+
**scheduler_kwargs,
|
648 |
+
)
|
649 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
650 |
+
self._num_timesteps = len(timesteps)
|
651 |
+
|
652 |
+
# 6. Denoising loop
|
653 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
654 |
+
for i, t in enumerate(timesteps):
|
655 |
+
if self.interrupt:
|
656 |
+
continue
|
657 |
+
|
658 |
+
# expand the latents if we are doing classifier free guidance
|
659 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
660 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
661 |
+
timestep = t.expand(latent_model_input.shape[0])
|
662 |
+
|
663 |
+
if latent_model_input.shape[-2] != latent_model_input.shape[-1]:
|
664 |
+
B, C, H, W = latent_model_input.shape
|
665 |
+
patch_size = self.transformer.config.patch_size
|
666 |
+
pH, pW = H // patch_size, W // patch_size
|
667 |
+
out = torch.zeros(
|
668 |
+
(B, C, self.transformer.max_seq, patch_size * patch_size),
|
669 |
+
dtype=latent_model_input.dtype,
|
670 |
+
device=latent_model_input.device
|
671 |
+
)
|
672 |
+
latent_model_input = einops.rearrange(latent_model_input, 'B C (H p1) (W p2) -> B C (H W) (p1 p2)', p1=patch_size, p2=patch_size)
|
673 |
+
out[:, :, 0:pH*pW] = latent_model_input
|
674 |
+
latent_model_input = out
|
675 |
+
|
676 |
+
noise_pred = self.transformer(
|
677 |
+
hidden_states = latent_model_input,
|
678 |
+
timesteps = timestep,
|
679 |
+
encoder_hidden_states = prompt_embeds,
|
680 |
+
pooled_embeds = pooled_prompt_embeds,
|
681 |
+
img_sizes = img_sizes,
|
682 |
+
img_ids = img_ids,
|
683 |
+
return_dict = False,
|
684 |
+
)[0]
|
685 |
+
noise_pred = -noise_pred
|
686 |
+
|
687 |
+
# perform guidance
|
688 |
+
if self.do_classifier_free_guidance:
|
689 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
690 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
691 |
+
|
692 |
+
# compute the previous noisy sample x_t -> x_t-1
|
693 |
+
latents_dtype = latents.dtype
|
694 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
695 |
+
|
696 |
+
if latents.dtype != latents_dtype:
|
697 |
+
if torch.backends.mps.is_available():
|
698 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
699 |
+
latents = latents.to(latents_dtype)
|
700 |
+
|
701 |
+
if callback_on_step_end is not None:
|
702 |
+
callback_kwargs = {}
|
703 |
+
for k in callback_on_step_end_tensor_inputs:
|
704 |
+
callback_kwargs[k] = locals()[k]
|
705 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
706 |
+
|
707 |
+
latents = callback_outputs.pop("latents", latents)
|
708 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
709 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
710 |
+
|
711 |
+
# call the callback, if provided
|
712 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
713 |
+
progress_bar.update()
|
714 |
+
|
715 |
+
if XLA_AVAILABLE:
|
716 |
+
xm.mark_step()
|
717 |
+
|
718 |
+
if output_type == "latent":
|
719 |
+
image = latents
|
720 |
+
|
721 |
+
else:
|
722 |
+
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
723 |
+
|
724 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
725 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
726 |
+
|
727 |
+
# Offload all models
|
728 |
+
self.maybe_free_model_hooks()
|
729 |
+
|
730 |
+
if not return_dict:
|
731 |
+
return (image,)
|
732 |
+
|
733 |
+
return HiDreamImagePipelineOutput(images=image)
|
hi_diffusers/pipelines/hidream_image/pipeline_output.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import List, Union
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import PIL.Image
|
6 |
+
|
7 |
+
from diffusers.utils import BaseOutput
|
8 |
+
|
9 |
+
|
10 |
+
@dataclass
|
11 |
+
class HiDreamImagePipelineOutput(BaseOutput):
|
12 |
+
"""
|
13 |
+
Output class for HiDreamImage pipelines.
|
14 |
+
|
15 |
+
Args:
|
16 |
+
images (`List[PIL.Image.Image]` or `np.ndarray`)
|
17 |
+
List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
|
18 |
+
num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
|
19 |
+
"""
|
20 |
+
|
21 |
+
images: Union[List[PIL.Image.Image], np.ndarray]
|
hi_diffusers/schedulers/flash_flow_match.py
ADDED
@@ -0,0 +1,428 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Stability AI, Katherine Crowson and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import math
|
16 |
+
from dataclasses import dataclass
|
17 |
+
from typing import List, Optional, Tuple, Union
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
import torch
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.schedulers.scheduling_utils import SchedulerMixin
|
23 |
+
from diffusers.utils import BaseOutput, is_scipy_available, logging
|
24 |
+
from diffusers.utils.torch_utils import randn_tensor
|
25 |
+
|
26 |
+
if is_scipy_available():
|
27 |
+
import scipy.stats
|
28 |
+
|
29 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class FlashFlowMatchEulerDiscreteSchedulerOutput(BaseOutput):
|
34 |
+
"""
|
35 |
+
Output class for the scheduler's `step` function output.
|
36 |
+
|
37 |
+
Args:
|
38 |
+
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
39 |
+
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
40 |
+
denoising loop.
|
41 |
+
"""
|
42 |
+
|
43 |
+
prev_sample: torch.FloatTensor
|
44 |
+
|
45 |
+
|
46 |
+
class FlashFlowMatchEulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
47 |
+
"""
|
48 |
+
Euler scheduler.
|
49 |
+
|
50 |
+
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
51 |
+
methods the library implements for all schedulers such as loading and saving.
|
52 |
+
|
53 |
+
Args:
|
54 |
+
num_train_timesteps (`int`, defaults to 1000):
|
55 |
+
The number of diffusion steps to train the model.
|
56 |
+
timestep_spacing (`str`, defaults to `"linspace"`):
|
57 |
+
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
58 |
+
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
59 |
+
shift (`float`, defaults to 1.0):
|
60 |
+
The shift value for the timestep schedule.
|
61 |
+
"""
|
62 |
+
|
63 |
+
_compatibles = []
|
64 |
+
order = 1
|
65 |
+
|
66 |
+
@register_to_config
|
67 |
+
def __init__(
|
68 |
+
self,
|
69 |
+
num_train_timesteps: int = 1000,
|
70 |
+
shift: float = 1.0,
|
71 |
+
use_dynamic_shifting=False,
|
72 |
+
base_shift: Optional[float] = 0.5,
|
73 |
+
max_shift: Optional[float] = 1.15,
|
74 |
+
base_image_seq_len: Optional[int] = 256,
|
75 |
+
max_image_seq_len: Optional[int] = 4096,
|
76 |
+
invert_sigmas: bool = False,
|
77 |
+
use_karras_sigmas: Optional[bool] = False,
|
78 |
+
use_exponential_sigmas: Optional[bool] = False,
|
79 |
+
use_beta_sigmas: Optional[bool] = False,
|
80 |
+
):
|
81 |
+
if self.config.use_beta_sigmas and not is_scipy_available():
|
82 |
+
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
|
83 |
+
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
|
84 |
+
raise ValueError(
|
85 |
+
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
|
86 |
+
)
|
87 |
+
timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy()
|
88 |
+
timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32)
|
89 |
+
|
90 |
+
sigmas = timesteps / num_train_timesteps
|
91 |
+
if not use_dynamic_shifting:
|
92 |
+
# when use_dynamic_shifting is True, we apply the timestep shifting on the fly based on the image resolution
|
93 |
+
sigmas = shift * sigmas / (1 + (shift - 1) * sigmas)
|
94 |
+
|
95 |
+
self.timesteps = sigmas * num_train_timesteps
|
96 |
+
|
97 |
+
self._step_index = None
|
98 |
+
self._begin_index = None
|
99 |
+
|
100 |
+
self.sigmas = sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
101 |
+
self.sigma_min = self.sigmas[-1].item()
|
102 |
+
self.sigma_max = self.sigmas[0].item()
|
103 |
+
|
104 |
+
@property
|
105 |
+
def step_index(self):
|
106 |
+
"""
|
107 |
+
The index counter for current timestep. It will increase 1 after each scheduler step.
|
108 |
+
"""
|
109 |
+
return self._step_index
|
110 |
+
|
111 |
+
@property
|
112 |
+
def begin_index(self):
|
113 |
+
"""
|
114 |
+
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
|
115 |
+
"""
|
116 |
+
return self._begin_index
|
117 |
+
|
118 |
+
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
|
119 |
+
def set_begin_index(self, begin_index: int = 0):
|
120 |
+
"""
|
121 |
+
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
|
122 |
+
|
123 |
+
Args:
|
124 |
+
begin_index (`int`):
|
125 |
+
The begin index for the scheduler.
|
126 |
+
"""
|
127 |
+
self._begin_index = begin_index
|
128 |
+
|
129 |
+
def scale_noise(
|
130 |
+
self,
|
131 |
+
sample: torch.FloatTensor,
|
132 |
+
timestep: Union[float, torch.FloatTensor],
|
133 |
+
noise: Optional[torch.FloatTensor] = None,
|
134 |
+
) -> torch.FloatTensor:
|
135 |
+
"""
|
136 |
+
Forward process in flow-matching
|
137 |
+
|
138 |
+
Args:
|
139 |
+
sample (`torch.FloatTensor`):
|
140 |
+
The input sample.
|
141 |
+
timestep (`int`, *optional*):
|
142 |
+
The current timestep in the diffusion chain.
|
143 |
+
|
144 |
+
Returns:
|
145 |
+
`torch.FloatTensor`:
|
146 |
+
A scaled input sample.
|
147 |
+
"""
|
148 |
+
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
149 |
+
sigmas = self.sigmas.to(device=sample.device, dtype=sample.dtype)
|
150 |
+
|
151 |
+
if sample.device.type == "mps" and torch.is_floating_point(timestep):
|
152 |
+
# mps does not support float64
|
153 |
+
schedule_timesteps = self.timesteps.to(sample.device, dtype=torch.float32)
|
154 |
+
timestep = timestep.to(sample.device, dtype=torch.float32)
|
155 |
+
else:
|
156 |
+
schedule_timesteps = self.timesteps.to(sample.device)
|
157 |
+
timestep = timestep.to(sample.device)
|
158 |
+
|
159 |
+
# self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
|
160 |
+
if self.begin_index is None:
|
161 |
+
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timestep]
|
162 |
+
elif self.step_index is not None:
|
163 |
+
# add_noise is called after first denoising step (for inpainting)
|
164 |
+
step_indices = [self.step_index] * timestep.shape[0]
|
165 |
+
else:
|
166 |
+
# add noise is called before first denoising step to create initial latent(img2img)
|
167 |
+
step_indices = [self.begin_index] * timestep.shape[0]
|
168 |
+
|
169 |
+
sigma = sigmas[step_indices].flatten()
|
170 |
+
while len(sigma.shape) < len(sample.shape):
|
171 |
+
sigma = sigma.unsqueeze(-1)
|
172 |
+
|
173 |
+
sample = sigma * noise + (1.0 - sigma) * sample
|
174 |
+
|
175 |
+
return sample
|
176 |
+
|
177 |
+
def _sigma_to_t(self, sigma):
|
178 |
+
return sigma * self.config.num_train_timesteps
|
179 |
+
|
180 |
+
def time_shift(self, mu: float, sigma: float, t: torch.Tensor):
|
181 |
+
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
|
182 |
+
|
183 |
+
def set_timesteps(
|
184 |
+
self,
|
185 |
+
num_inference_steps: int = None,
|
186 |
+
device: Union[str, torch.device] = None,
|
187 |
+
sigmas: Optional[List[float]] = None,
|
188 |
+
mu: Optional[float] = None,
|
189 |
+
):
|
190 |
+
"""
|
191 |
+
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
192 |
+
|
193 |
+
Args:
|
194 |
+
num_inference_steps (`int`):
|
195 |
+
The number of diffusion steps used when generating samples with a pre-trained model.
|
196 |
+
device (`str` or `torch.device`, *optional*):
|
197 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
198 |
+
"""
|
199 |
+
if self.config.use_dynamic_shifting and mu is None:
|
200 |
+
raise ValueError(" you have a pass a value for `mu` when `use_dynamic_shifting` is set to be `True`")
|
201 |
+
|
202 |
+
if sigmas is None:
|
203 |
+
timesteps = np.linspace(
|
204 |
+
self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps
|
205 |
+
)
|
206 |
+
|
207 |
+
sigmas = timesteps / self.config.num_train_timesteps
|
208 |
+
else:
|
209 |
+
sigmas = np.array(sigmas).astype(np.float32)
|
210 |
+
num_inference_steps = len(sigmas)
|
211 |
+
self.num_inference_steps = num_inference_steps
|
212 |
+
|
213 |
+
if self.config.use_dynamic_shifting:
|
214 |
+
sigmas = self.time_shift(mu, 1.0, sigmas)
|
215 |
+
else:
|
216 |
+
sigmas = self.config.shift * sigmas / (1 + (self.config.shift - 1) * sigmas)
|
217 |
+
|
218 |
+
if self.config.use_karras_sigmas:
|
219 |
+
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
220 |
+
|
221 |
+
elif self.config.use_exponential_sigmas:
|
222 |
+
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
223 |
+
|
224 |
+
elif self.config.use_beta_sigmas:
|
225 |
+
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
226 |
+
|
227 |
+
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)
|
228 |
+
timesteps = sigmas * self.config.num_train_timesteps
|
229 |
+
|
230 |
+
if self.config.invert_sigmas:
|
231 |
+
sigmas = 1.0 - sigmas
|
232 |
+
timesteps = sigmas * self.config.num_train_timesteps
|
233 |
+
sigmas = torch.cat([sigmas, torch.ones(1, device=sigmas.device)])
|
234 |
+
else:
|
235 |
+
sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
|
236 |
+
|
237 |
+
self.timesteps = timesteps.to(device=device)
|
238 |
+
self.sigmas = sigmas
|
239 |
+
self._step_index = None
|
240 |
+
self._begin_index = None
|
241 |
+
|
242 |
+
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
243 |
+
if schedule_timesteps is None:
|
244 |
+
schedule_timesteps = self.timesteps
|
245 |
+
|
246 |
+
indices = (schedule_timesteps == timestep).nonzero()
|
247 |
+
|
248 |
+
# The sigma index that is taken for the **very** first `step`
|
249 |
+
# is always the second index (or the last index if there is only 1)
|
250 |
+
# This way we can ensure we don't accidentally skip a sigma in
|
251 |
+
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
252 |
+
pos = 1 if len(indices) > 1 else 0
|
253 |
+
|
254 |
+
return indices[pos].item()
|
255 |
+
|
256 |
+
def _init_step_index(self, timestep):
|
257 |
+
if self.begin_index is None:
|
258 |
+
if isinstance(timestep, torch.Tensor):
|
259 |
+
timestep = timestep.to(self.timesteps.device)
|
260 |
+
self._step_index = self.index_for_timestep(timestep)
|
261 |
+
else:
|
262 |
+
self._step_index = self._begin_index
|
263 |
+
|
264 |
+
def step(
|
265 |
+
self,
|
266 |
+
model_output: torch.FloatTensor,
|
267 |
+
timestep: Union[float, torch.FloatTensor],
|
268 |
+
sample: torch.FloatTensor,
|
269 |
+
s_churn: float = 0.0,
|
270 |
+
s_tmin: float = 0.0,
|
271 |
+
s_tmax: float = float("inf"),
|
272 |
+
s_noise: float = 1.0,
|
273 |
+
generator: Optional[torch.Generator] = None,
|
274 |
+
return_dict: bool = True,
|
275 |
+
) -> Union[FlashFlowMatchEulerDiscreteSchedulerOutput, Tuple]:
|
276 |
+
"""
|
277 |
+
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
278 |
+
process from the learned model outputs (most often the predicted noise).
|
279 |
+
|
280 |
+
Args:
|
281 |
+
model_output (`torch.FloatTensor`):
|
282 |
+
The direct output from learned diffusion model.
|
283 |
+
timestep (`float`):
|
284 |
+
The current discrete timestep in the diffusion chain.
|
285 |
+
sample (`torch.FloatTensor`):
|
286 |
+
A current instance of a sample created by the diffusion process.
|
287 |
+
s_churn (`float`):
|
288 |
+
s_tmin (`float`):
|
289 |
+
s_tmax (`float`):
|
290 |
+
s_noise (`float`, defaults to 1.0):
|
291 |
+
Scaling factor for noise added to the sample.
|
292 |
+
generator (`torch.Generator`, *optional*):
|
293 |
+
A random number generator.
|
294 |
+
return_dict (`bool`):
|
295 |
+
Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or
|
296 |
+
tuple.
|
297 |
+
|
298 |
+
Returns:
|
299 |
+
[`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`:
|
300 |
+
If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is
|
301 |
+
returned, otherwise a tuple is returned where the first element is the sample tensor.
|
302 |
+
"""
|
303 |
+
|
304 |
+
if (
|
305 |
+
isinstance(timestep, int)
|
306 |
+
or isinstance(timestep, torch.IntTensor)
|
307 |
+
or isinstance(timestep, torch.LongTensor)
|
308 |
+
):
|
309 |
+
raise ValueError(
|
310 |
+
(
|
311 |
+
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
312 |
+
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
|
313 |
+
" one of the `scheduler.timesteps` as a timestep."
|
314 |
+
),
|
315 |
+
)
|
316 |
+
|
317 |
+
if self.step_index is None:
|
318 |
+
self._init_step_index(timestep)
|
319 |
+
|
320 |
+
# Upcast to avoid precision issues when computing prev_sample
|
321 |
+
|
322 |
+
sigma = self.sigmas[self.step_index]
|
323 |
+
|
324 |
+
# Upcast to avoid precision issues when computing prev_sample
|
325 |
+
sample = sample.to(torch.float32)
|
326 |
+
|
327 |
+
denoised = sample - model_output * sigma
|
328 |
+
|
329 |
+
if self.step_index < self.num_inference_steps - 1:
|
330 |
+
sigma_next = self.sigmas[self.step_index + 1]
|
331 |
+
noise = randn_tensor(
|
332 |
+
model_output.shape,
|
333 |
+
generator=generator,
|
334 |
+
device=model_output.device,
|
335 |
+
dtype=denoised.dtype,
|
336 |
+
)
|
337 |
+
sample = sigma_next * noise + (1.0 - sigma_next) * denoised
|
338 |
+
|
339 |
+
self._step_index += 1
|
340 |
+
sample = sample.to(model_output.dtype)
|
341 |
+
|
342 |
+
if not return_dict:
|
343 |
+
return (sample,)
|
344 |
+
|
345 |
+
return FlashFlowMatchEulerDiscreteSchedulerOutput(prev_sample=sample)
|
346 |
+
|
347 |
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
|
348 |
+
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
|
349 |
+
"""Constructs the noise schedule of Karras et al. (2022)."""
|
350 |
+
|
351 |
+
# Hack to make sure that other schedulers which copy this function don't break
|
352 |
+
# TODO: Add this logic to the other schedulers
|
353 |
+
if hasattr(self.config, "sigma_min"):
|
354 |
+
sigma_min = self.config.sigma_min
|
355 |
+
else:
|
356 |
+
sigma_min = None
|
357 |
+
|
358 |
+
if hasattr(self.config, "sigma_max"):
|
359 |
+
sigma_max = self.config.sigma_max
|
360 |
+
else:
|
361 |
+
sigma_max = None
|
362 |
+
|
363 |
+
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
364 |
+
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
365 |
+
|
366 |
+
rho = 7.0 # 7.0 is the value used in the paper
|
367 |
+
ramp = np.linspace(0, 1, num_inference_steps)
|
368 |
+
min_inv_rho = sigma_min ** (1 / rho)
|
369 |
+
max_inv_rho = sigma_max ** (1 / rho)
|
370 |
+
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
371 |
+
return sigmas
|
372 |
+
|
373 |
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
|
374 |
+
def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
|
375 |
+
"""Constructs an exponential noise schedule."""
|
376 |
+
|
377 |
+
# Hack to make sure that other schedulers which copy this function don't break
|
378 |
+
# TODO: Add this logic to the other schedulers
|
379 |
+
if hasattr(self.config, "sigma_min"):
|
380 |
+
sigma_min = self.config.sigma_min
|
381 |
+
else:
|
382 |
+
sigma_min = None
|
383 |
+
|
384 |
+
if hasattr(self.config, "sigma_max"):
|
385 |
+
sigma_max = self.config.sigma_max
|
386 |
+
else:
|
387 |
+
sigma_max = None
|
388 |
+
|
389 |
+
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
390 |
+
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
391 |
+
|
392 |
+
sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
|
393 |
+
return sigmas
|
394 |
+
|
395 |
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
|
396 |
+
def _convert_to_beta(
|
397 |
+
self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
|
398 |
+
) -> torch.Tensor:
|
399 |
+
"""From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""
|
400 |
+
|
401 |
+
# Hack to make sure that other schedulers which copy this function don't break
|
402 |
+
# TODO: Add this logic to the other schedulers
|
403 |
+
if hasattr(self.config, "sigma_min"):
|
404 |
+
sigma_min = self.config.sigma_min
|
405 |
+
else:
|
406 |
+
sigma_min = None
|
407 |
+
|
408 |
+
if hasattr(self.config, "sigma_max"):
|
409 |
+
sigma_max = self.config.sigma_max
|
410 |
+
else:
|
411 |
+
sigma_max = None
|
412 |
+
|
413 |
+
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
414 |
+
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
415 |
+
|
416 |
+
sigmas = np.array(
|
417 |
+
[
|
418 |
+
sigma_min + (ppf * (sigma_max - sigma_min))
|
419 |
+
for ppf in [
|
420 |
+
scipy.stats.beta.ppf(timestep, alpha, beta)
|
421 |
+
for timestep in 1 - np.linspace(0, 1, num_inference_steps)
|
422 |
+
]
|
423 |
+
]
|
424 |
+
)
|
425 |
+
return sigmas
|
426 |
+
|
427 |
+
def __len__(self):
|
428 |
+
return self.config.num_train_timesteps
|
hi_diffusers/schedulers/fm_solvers_unipc.py
ADDED
@@ -0,0 +1,800 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copied from https://github.com/huggingface/diffusers/blob/v0.31.0/src/diffusers/schedulers/scheduling_unipc_multistep.py
|
2 |
+
# Convert unipc for flow matching
|
3 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
4 |
+
|
5 |
+
import math
|
6 |
+
from typing import List, Optional, Tuple, Union
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
11 |
+
from diffusers.schedulers.scheduling_utils import (KarrasDiffusionSchedulers,
|
12 |
+
SchedulerMixin,
|
13 |
+
SchedulerOutput)
|
14 |
+
from diffusers.utils import deprecate, is_scipy_available
|
15 |
+
|
16 |
+
if is_scipy_available():
|
17 |
+
import scipy.stats
|
18 |
+
|
19 |
+
|
20 |
+
class FlowUniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
21 |
+
"""
|
22 |
+
`UniPCMultistepScheduler` is a training-free framework designed for the fast sampling of diffusion models.
|
23 |
+
|
24 |
+
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
25 |
+
methods the library implements for all schedulers such as loading and saving.
|
26 |
+
|
27 |
+
Args:
|
28 |
+
num_train_timesteps (`int`, defaults to 1000):
|
29 |
+
The number of diffusion steps to train the model.
|
30 |
+
solver_order (`int`, default `2`):
|
31 |
+
The UniPC order which can be any positive integer. The effective order of accuracy is `solver_order + 1`
|
32 |
+
due to the UniC. It is recommended to use `solver_order=2` for guided sampling, and `solver_order=3` for
|
33 |
+
unconditional sampling.
|
34 |
+
prediction_type (`str`, defaults to "flow_prediction"):
|
35 |
+
Prediction type of the scheduler function; must be `flow_prediction` for this scheduler, which predicts
|
36 |
+
the flow of the diffusion process.
|
37 |
+
thresholding (`bool`, defaults to `False`):
|
38 |
+
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
|
39 |
+
as Stable Diffusion.
|
40 |
+
dynamic_thresholding_ratio (`float`, defaults to 0.995):
|
41 |
+
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
|
42 |
+
sample_max_value (`float`, defaults to 1.0):
|
43 |
+
The threshold value for dynamic thresholding. Valid only when `thresholding=True` and `predict_x0=True`.
|
44 |
+
predict_x0 (`bool`, defaults to `True`):
|
45 |
+
Whether to use the updating algorithm on the predicted x0.
|
46 |
+
solver_type (`str`, default `bh2`):
|
47 |
+
Solver type for UniPC. It is recommended to use `bh1` for unconditional sampling when steps < 10, and `bh2`
|
48 |
+
otherwise.
|
49 |
+
lower_order_final (`bool`, default `True`):
|
50 |
+
Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
|
51 |
+
stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
|
52 |
+
disable_corrector (`list`, default `[]`):
|
53 |
+
Decides which step to disable the corrector to mitigate the misalignment between `epsilon_theta(x_t, c)`
|
54 |
+
and `epsilon_theta(x_t^c, c)` which can influence convergence for a large guidance scale. Corrector is
|
55 |
+
usually disabled during the first few steps.
|
56 |
+
solver_p (`SchedulerMixin`, default `None`):
|
57 |
+
Any other scheduler that if specified, the algorithm becomes `solver_p + UniC`.
|
58 |
+
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
|
59 |
+
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
|
60 |
+
the sigmas are determined according to a sequence of noise levels {Οi}.
|
61 |
+
use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
|
62 |
+
Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
|
63 |
+
timestep_spacing (`str`, defaults to `"linspace"`):
|
64 |
+
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
65 |
+
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
66 |
+
steps_offset (`int`, defaults to 0):
|
67 |
+
An offset added to the inference steps, as required by some model families.
|
68 |
+
final_sigmas_type (`str`, defaults to `"zero"`):
|
69 |
+
The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
|
70 |
+
sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
|
71 |
+
"""
|
72 |
+
|
73 |
+
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
|
74 |
+
order = 1
|
75 |
+
|
76 |
+
@register_to_config
|
77 |
+
def __init__(
|
78 |
+
self,
|
79 |
+
num_train_timesteps: int = 1000,
|
80 |
+
solver_order: int = 2,
|
81 |
+
prediction_type: str = "flow_prediction",
|
82 |
+
shift: Optional[float] = 1.0,
|
83 |
+
use_dynamic_shifting=False,
|
84 |
+
thresholding: bool = False,
|
85 |
+
dynamic_thresholding_ratio: float = 0.995,
|
86 |
+
sample_max_value: float = 1.0,
|
87 |
+
predict_x0: bool = True,
|
88 |
+
solver_type: str = "bh2",
|
89 |
+
lower_order_final: bool = True,
|
90 |
+
disable_corrector: List[int] = [],
|
91 |
+
solver_p: SchedulerMixin = None,
|
92 |
+
timestep_spacing: str = "linspace",
|
93 |
+
steps_offset: int = 0,
|
94 |
+
final_sigmas_type: Optional[str] = "zero", # "zero", "sigma_min"
|
95 |
+
):
|
96 |
+
|
97 |
+
if solver_type not in ["bh1", "bh2"]:
|
98 |
+
if solver_type in ["midpoint", "heun", "logrho"]:
|
99 |
+
self.register_to_config(solver_type="bh2")
|
100 |
+
else:
|
101 |
+
raise NotImplementedError(
|
102 |
+
f"{solver_type} is not implemented for {self.__class__}")
|
103 |
+
|
104 |
+
self.predict_x0 = predict_x0
|
105 |
+
# setable values
|
106 |
+
self.num_inference_steps = None
|
107 |
+
alphas = np.linspace(1, 1 / num_train_timesteps,
|
108 |
+
num_train_timesteps)[::-1].copy()
|
109 |
+
sigmas = 1.0 - alphas
|
110 |
+
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32)
|
111 |
+
|
112 |
+
if not use_dynamic_shifting:
|
113 |
+
# when use_dynamic_shifting is True, we apply the timestep shifting on the fly based on the image resolution
|
114 |
+
sigmas = shift * sigmas / (1 +
|
115 |
+
(shift - 1) * sigmas) # pyright: ignore
|
116 |
+
|
117 |
+
self.sigmas = sigmas
|
118 |
+
self.timesteps = sigmas * num_train_timesteps
|
119 |
+
|
120 |
+
self.model_outputs = [None] * solver_order
|
121 |
+
self.timestep_list = [None] * solver_order
|
122 |
+
self.lower_order_nums = 0
|
123 |
+
self.disable_corrector = disable_corrector
|
124 |
+
self.solver_p = solver_p
|
125 |
+
self.last_sample = None
|
126 |
+
self._step_index = None
|
127 |
+
self._begin_index = None
|
128 |
+
|
129 |
+
self.sigmas = self.sigmas.to(
|
130 |
+
"cpu") # to avoid too much CPU/GPU communication
|
131 |
+
self.sigma_min = self.sigmas[-1].item()
|
132 |
+
self.sigma_max = self.sigmas[0].item()
|
133 |
+
|
134 |
+
@property
|
135 |
+
def step_index(self):
|
136 |
+
"""
|
137 |
+
The index counter for current timestep. It will increase 1 after each scheduler step.
|
138 |
+
"""
|
139 |
+
return self._step_index
|
140 |
+
|
141 |
+
@property
|
142 |
+
def begin_index(self):
|
143 |
+
"""
|
144 |
+
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
|
145 |
+
"""
|
146 |
+
return self._begin_index
|
147 |
+
|
148 |
+
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
|
149 |
+
def set_begin_index(self, begin_index: int = 0):
|
150 |
+
"""
|
151 |
+
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
|
152 |
+
|
153 |
+
Args:
|
154 |
+
begin_index (`int`):
|
155 |
+
The begin index for the scheduler.
|
156 |
+
"""
|
157 |
+
self._begin_index = begin_index
|
158 |
+
|
159 |
+
# Modified from diffusers.schedulers.scheduling_flow_match_euler_discrete.FlowMatchEulerDiscreteScheduler.set_timesteps
|
160 |
+
def set_timesteps(
|
161 |
+
self,
|
162 |
+
num_inference_steps: Union[int, None] = None,
|
163 |
+
device: Union[str, torch.device] = None,
|
164 |
+
sigmas: Optional[List[float]] = None,
|
165 |
+
mu: Optional[Union[float, None]] = None,
|
166 |
+
shift: Optional[Union[float, None]] = None,
|
167 |
+
):
|
168 |
+
"""
|
169 |
+
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
170 |
+
Args:
|
171 |
+
num_inference_steps (`int`):
|
172 |
+
Total number of the spacing of the time steps.
|
173 |
+
device (`str` or `torch.device`, *optional*):
|
174 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
175 |
+
"""
|
176 |
+
|
177 |
+
if self.config.use_dynamic_shifting and mu is None:
|
178 |
+
raise ValueError(
|
179 |
+
" you have to pass a value for `mu` when `use_dynamic_shifting` is set to be `True`"
|
180 |
+
)
|
181 |
+
|
182 |
+
if sigmas is None:
|
183 |
+
sigmas = np.linspace(self.sigma_max, self.sigma_min,
|
184 |
+
num_inference_steps +
|
185 |
+
1).copy()[:-1] # pyright: ignore
|
186 |
+
|
187 |
+
if self.config.use_dynamic_shifting:
|
188 |
+
sigmas = self.time_shift(mu, 1.0, sigmas) # pyright: ignore
|
189 |
+
else:
|
190 |
+
if shift is None:
|
191 |
+
shift = self.config.shift
|
192 |
+
sigmas = shift * sigmas / (1 +
|
193 |
+
(shift - 1) * sigmas) # pyright: ignore
|
194 |
+
|
195 |
+
if self.config.final_sigmas_type == "sigma_min":
|
196 |
+
sigma_last = ((1 - self.alphas_cumprod[0]) /
|
197 |
+
self.alphas_cumprod[0])**0.5
|
198 |
+
elif self.config.final_sigmas_type == "zero":
|
199 |
+
sigma_last = 0
|
200 |
+
else:
|
201 |
+
raise ValueError(
|
202 |
+
f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
|
203 |
+
)
|
204 |
+
|
205 |
+
timesteps = sigmas * self.config.num_train_timesteps
|
206 |
+
sigmas = np.concatenate([sigmas, [sigma_last]
|
207 |
+
]).astype(np.float32) # pyright: ignore
|
208 |
+
|
209 |
+
self.sigmas = torch.from_numpy(sigmas)
|
210 |
+
self.timesteps = torch.from_numpy(timesteps).to(
|
211 |
+
device=device, dtype=torch.int64)
|
212 |
+
|
213 |
+
self.num_inference_steps = len(timesteps)
|
214 |
+
|
215 |
+
self.model_outputs = [
|
216 |
+
None,
|
217 |
+
] * self.config.solver_order
|
218 |
+
self.lower_order_nums = 0
|
219 |
+
self.last_sample = None
|
220 |
+
if self.solver_p:
|
221 |
+
self.solver_p.set_timesteps(self.num_inference_steps, device=device)
|
222 |
+
|
223 |
+
# add an index counter for schedulers that allow duplicated timesteps
|
224 |
+
self._step_index = None
|
225 |
+
self._begin_index = None
|
226 |
+
self.sigmas = self.sigmas.to(
|
227 |
+
"cpu") # to avoid too much CPU/GPU communication
|
228 |
+
|
229 |
+
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
|
230 |
+
def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
|
231 |
+
"""
|
232 |
+
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
|
233 |
+
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
|
234 |
+
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
|
235 |
+
pixels from saturation at each step. We find that dynamic thresholding results in significantly better
|
236 |
+
photorealism as well as better image-text alignment, especially when using very large guidance weights."
|
237 |
+
|
238 |
+
https://arxiv.org/abs/2205.11487
|
239 |
+
"""
|
240 |
+
dtype = sample.dtype
|
241 |
+
batch_size, channels, *remaining_dims = sample.shape
|
242 |
+
|
243 |
+
if dtype not in (torch.float32, torch.float64):
|
244 |
+
sample = sample.float(
|
245 |
+
) # upcast for quantile calculation, and clamp not implemented for cpu half
|
246 |
+
|
247 |
+
# Flatten sample for doing quantile calculation along each image
|
248 |
+
sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
|
249 |
+
|
250 |
+
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
|
251 |
+
|
252 |
+
s = torch.quantile(
|
253 |
+
abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
|
254 |
+
s = torch.clamp(
|
255 |
+
s, min=1, max=self.config.sample_max_value
|
256 |
+
) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
|
257 |
+
s = s.unsqueeze(
|
258 |
+
1) # (batch_size, 1) because clamp will broadcast along dim=0
|
259 |
+
sample = torch.clamp(
|
260 |
+
sample, -s, s
|
261 |
+
) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
|
262 |
+
|
263 |
+
sample = sample.reshape(batch_size, channels, *remaining_dims)
|
264 |
+
sample = sample.to(dtype)
|
265 |
+
|
266 |
+
return sample
|
267 |
+
|
268 |
+
# Copied from diffusers.schedulers.scheduling_flow_match_euler_discrete.FlowMatchEulerDiscreteScheduler._sigma_to_t
|
269 |
+
def _sigma_to_t(self, sigma):
|
270 |
+
return sigma * self.config.num_train_timesteps
|
271 |
+
|
272 |
+
def _sigma_to_alpha_sigma_t(self, sigma):
|
273 |
+
return 1 - sigma, sigma
|
274 |
+
|
275 |
+
# Copied from diffusers.schedulers.scheduling_flow_match_euler_discrete.set_timesteps
|
276 |
+
def time_shift(self, mu: float, sigma: float, t: torch.Tensor):
|
277 |
+
return math.exp(mu) / (math.exp(mu) + (1 / t - 1)**sigma)
|
278 |
+
|
279 |
+
def convert_model_output(
|
280 |
+
self,
|
281 |
+
model_output: torch.Tensor,
|
282 |
+
*args,
|
283 |
+
sample: torch.Tensor = None,
|
284 |
+
**kwargs,
|
285 |
+
) -> torch.Tensor:
|
286 |
+
r"""
|
287 |
+
Convert the model output to the corresponding type the UniPC algorithm needs.
|
288 |
+
|
289 |
+
Args:
|
290 |
+
model_output (`torch.Tensor`):
|
291 |
+
The direct output from the learned diffusion model.
|
292 |
+
timestep (`int`):
|
293 |
+
The current discrete timestep in the diffusion chain.
|
294 |
+
sample (`torch.Tensor`):
|
295 |
+
A current instance of a sample created by the diffusion process.
|
296 |
+
|
297 |
+
Returns:
|
298 |
+
`torch.Tensor`:
|
299 |
+
The converted model output.
|
300 |
+
"""
|
301 |
+
timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
|
302 |
+
if sample is None:
|
303 |
+
if len(args) > 1:
|
304 |
+
sample = args[1]
|
305 |
+
else:
|
306 |
+
raise ValueError(
|
307 |
+
"missing `sample` as a required keyward argument")
|
308 |
+
if timestep is not None:
|
309 |
+
deprecate(
|
310 |
+
"timesteps",
|
311 |
+
"1.0.0",
|
312 |
+
"Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
|
313 |
+
)
|
314 |
+
|
315 |
+
sigma = self.sigmas[self.step_index]
|
316 |
+
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
|
317 |
+
|
318 |
+
if self.predict_x0:
|
319 |
+
if self.config.prediction_type == "flow_prediction":
|
320 |
+
sigma_t = self.sigmas[self.step_index]
|
321 |
+
x0_pred = sample - sigma_t * model_output
|
322 |
+
else:
|
323 |
+
raise ValueError(
|
324 |
+
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`,"
|
325 |
+
" `v_prediction` or `flow_prediction` for the UniPCMultistepScheduler."
|
326 |
+
)
|
327 |
+
|
328 |
+
if self.config.thresholding:
|
329 |
+
x0_pred = self._threshold_sample(x0_pred)
|
330 |
+
|
331 |
+
return x0_pred
|
332 |
+
else:
|
333 |
+
if self.config.prediction_type == "flow_prediction":
|
334 |
+
sigma_t = self.sigmas[self.step_index]
|
335 |
+
epsilon = sample - (1 - sigma_t) * model_output
|
336 |
+
else:
|
337 |
+
raise ValueError(
|
338 |
+
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`,"
|
339 |
+
" `v_prediction` or `flow_prediction` for the UniPCMultistepScheduler."
|
340 |
+
)
|
341 |
+
|
342 |
+
if self.config.thresholding:
|
343 |
+
sigma_t = self.sigmas[self.step_index]
|
344 |
+
x0_pred = sample - sigma_t * model_output
|
345 |
+
x0_pred = self._threshold_sample(x0_pred)
|
346 |
+
epsilon = model_output + x0_pred
|
347 |
+
|
348 |
+
return epsilon
|
349 |
+
|
350 |
+
def multistep_uni_p_bh_update(
|
351 |
+
self,
|
352 |
+
model_output: torch.Tensor,
|
353 |
+
*args,
|
354 |
+
sample: torch.Tensor = None,
|
355 |
+
order: int = None, # pyright: ignore
|
356 |
+
**kwargs,
|
357 |
+
) -> torch.Tensor:
|
358 |
+
"""
|
359 |
+
One step for the UniP (B(h) version). Alternatively, `self.solver_p` is used if is specified.
|
360 |
+
|
361 |
+
Args:
|
362 |
+
model_output (`torch.Tensor`):
|
363 |
+
The direct output from the learned diffusion model at the current timestep.
|
364 |
+
prev_timestep (`int`):
|
365 |
+
The previous discrete timestep in the diffusion chain.
|
366 |
+
sample (`torch.Tensor`):
|
367 |
+
A current instance of a sample created by the diffusion process.
|
368 |
+
order (`int`):
|
369 |
+
The order of UniP at this timestep (corresponds to the *p* in UniPC-p).
|
370 |
+
|
371 |
+
Returns:
|
372 |
+
`torch.Tensor`:
|
373 |
+
The sample tensor at the previous timestep.
|
374 |
+
"""
|
375 |
+
prev_timestep = args[0] if len(args) > 0 else kwargs.pop(
|
376 |
+
"prev_timestep", None)
|
377 |
+
if sample is None:
|
378 |
+
if len(args) > 1:
|
379 |
+
sample = args[1]
|
380 |
+
else:
|
381 |
+
raise ValueError(
|
382 |
+
" missing `sample` as a required keyward argument")
|
383 |
+
if order is None:
|
384 |
+
if len(args) > 2:
|
385 |
+
order = args[2]
|
386 |
+
else:
|
387 |
+
raise ValueError(
|
388 |
+
" missing `order` as a required keyward argument")
|
389 |
+
if prev_timestep is not None:
|
390 |
+
deprecate(
|
391 |
+
"prev_timestep",
|
392 |
+
"1.0.0",
|
393 |
+
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
|
394 |
+
)
|
395 |
+
model_output_list = self.model_outputs
|
396 |
+
|
397 |
+
s0 = self.timestep_list[-1]
|
398 |
+
m0 = model_output_list[-1]
|
399 |
+
x = sample
|
400 |
+
|
401 |
+
if self.solver_p:
|
402 |
+
x_t = self.solver_p.step(model_output, s0, x).prev_sample
|
403 |
+
return x_t
|
404 |
+
|
405 |
+
sigma_t, sigma_s0 = self.sigmas[self.step_index + 1], self.sigmas[
|
406 |
+
self.step_index] # pyright: ignore
|
407 |
+
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
|
408 |
+
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
|
409 |
+
|
410 |
+
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
|
411 |
+
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
|
412 |
+
|
413 |
+
h = lambda_t - lambda_s0
|
414 |
+
device = sample.device
|
415 |
+
|
416 |
+
rks = []
|
417 |
+
D1s = []
|
418 |
+
for i in range(1, order):
|
419 |
+
si = self.step_index - i # pyright: ignore
|
420 |
+
mi = model_output_list[-(i + 1)]
|
421 |
+
alpha_si, sigma_si = self._sigma_to_alpha_sigma_t(self.sigmas[si])
|
422 |
+
lambda_si = torch.log(alpha_si) - torch.log(sigma_si)
|
423 |
+
rk = (lambda_si - lambda_s0) / h
|
424 |
+
rks.append(rk)
|
425 |
+
D1s.append((mi - m0) / rk) # pyright: ignore
|
426 |
+
|
427 |
+
rks.append(1.0)
|
428 |
+
rks = torch.tensor(rks, device=device)
|
429 |
+
|
430 |
+
R = []
|
431 |
+
b = []
|
432 |
+
|
433 |
+
hh = -h if self.predict_x0 else h
|
434 |
+
h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1
|
435 |
+
h_phi_k = h_phi_1 / hh - 1
|
436 |
+
|
437 |
+
factorial_i = 1
|
438 |
+
|
439 |
+
if self.config.solver_type == "bh1":
|
440 |
+
B_h = hh
|
441 |
+
elif self.config.solver_type == "bh2":
|
442 |
+
B_h = torch.expm1(hh)
|
443 |
+
else:
|
444 |
+
raise NotImplementedError()
|
445 |
+
|
446 |
+
for i in range(1, order + 1):
|
447 |
+
R.append(torch.pow(rks, i - 1))
|
448 |
+
b.append(h_phi_k * factorial_i / B_h)
|
449 |
+
factorial_i *= i + 1
|
450 |
+
h_phi_k = h_phi_k / hh - 1 / factorial_i
|
451 |
+
|
452 |
+
R = torch.stack(R)
|
453 |
+
b = torch.tensor(b, device=device)
|
454 |
+
|
455 |
+
if len(D1s) > 0:
|
456 |
+
D1s = torch.stack(D1s, dim=1) # (B, K)
|
457 |
+
# for order 2, we use a simplified version
|
458 |
+
if order == 2:
|
459 |
+
rhos_p = torch.tensor([0.5], dtype=x.dtype, device=device)
|
460 |
+
else:
|
461 |
+
rhos_p = torch.linalg.solve(R[:-1, :-1],
|
462 |
+
b[:-1]).to(device).to(x.dtype)
|
463 |
+
else:
|
464 |
+
D1s = None
|
465 |
+
|
466 |
+
if self.predict_x0:
|
467 |
+
x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0
|
468 |
+
if D1s is not None:
|
469 |
+
pred_res = torch.einsum("k,bkc...->bc...", rhos_p,
|
470 |
+
D1s) # pyright: ignore
|
471 |
+
else:
|
472 |
+
pred_res = 0
|
473 |
+
x_t = x_t_ - alpha_t * B_h * pred_res
|
474 |
+
else:
|
475 |
+
x_t_ = alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0
|
476 |
+
if D1s is not None:
|
477 |
+
pred_res = torch.einsum("k,bkc...->bc...", rhos_p,
|
478 |
+
D1s) # pyright: ignore
|
479 |
+
else:
|
480 |
+
pred_res = 0
|
481 |
+
x_t = x_t_ - sigma_t * B_h * pred_res
|
482 |
+
|
483 |
+
x_t = x_t.to(x.dtype)
|
484 |
+
return x_t
|
485 |
+
|
486 |
+
def multistep_uni_c_bh_update(
|
487 |
+
self,
|
488 |
+
this_model_output: torch.Tensor,
|
489 |
+
*args,
|
490 |
+
last_sample: torch.Tensor = None,
|
491 |
+
this_sample: torch.Tensor = None,
|
492 |
+
order: int = None, # pyright: ignore
|
493 |
+
**kwargs,
|
494 |
+
) -> torch.Tensor:
|
495 |
+
"""
|
496 |
+
One step for the UniC (B(h) version).
|
497 |
+
|
498 |
+
Args:
|
499 |
+
this_model_output (`torch.Tensor`):
|
500 |
+
The model outputs at `x_t`.
|
501 |
+
this_timestep (`int`):
|
502 |
+
The current timestep `t`.
|
503 |
+
last_sample (`torch.Tensor`):
|
504 |
+
The generated sample before the last predictor `x_{t-1}`.
|
505 |
+
this_sample (`torch.Tensor`):
|
506 |
+
The generated sample after the last predictor `x_{t}`.
|
507 |
+
order (`int`):
|
508 |
+
The `p` of UniC-p at this step. The effective order of accuracy should be `order + 1`.
|
509 |
+
|
510 |
+
Returns:
|
511 |
+
`torch.Tensor`:
|
512 |
+
The corrected sample tensor at the current timestep.
|
513 |
+
"""
|
514 |
+
this_timestep = args[0] if len(args) > 0 else kwargs.pop(
|
515 |
+
"this_timestep", None)
|
516 |
+
if last_sample is None:
|
517 |
+
if len(args) > 1:
|
518 |
+
last_sample = args[1]
|
519 |
+
else:
|
520 |
+
raise ValueError(
|
521 |
+
" missing`last_sample` as a required keyward argument")
|
522 |
+
if this_sample is None:
|
523 |
+
if len(args) > 2:
|
524 |
+
this_sample = args[2]
|
525 |
+
else:
|
526 |
+
raise ValueError(
|
527 |
+
" missing`this_sample` as a required keyward argument")
|
528 |
+
if order is None:
|
529 |
+
if len(args) > 3:
|
530 |
+
order = args[3]
|
531 |
+
else:
|
532 |
+
raise ValueError(
|
533 |
+
" missing`order` as a required keyward argument")
|
534 |
+
if this_timestep is not None:
|
535 |
+
deprecate(
|
536 |
+
"this_timestep",
|
537 |
+
"1.0.0",
|
538 |
+
"Passing `this_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
|
539 |
+
)
|
540 |
+
|
541 |
+
model_output_list = self.model_outputs
|
542 |
+
|
543 |
+
m0 = model_output_list[-1]
|
544 |
+
x = last_sample
|
545 |
+
x_t = this_sample
|
546 |
+
model_t = this_model_output
|
547 |
+
|
548 |
+
sigma_t, sigma_s0 = self.sigmas[self.step_index], self.sigmas[
|
549 |
+
self.step_index - 1] # pyright: ignore
|
550 |
+
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
|
551 |
+
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
|
552 |
+
|
553 |
+
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
|
554 |
+
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
|
555 |
+
|
556 |
+
h = lambda_t - lambda_s0
|
557 |
+
device = this_sample.device
|
558 |
+
|
559 |
+
rks = []
|
560 |
+
D1s = []
|
561 |
+
for i in range(1, order):
|
562 |
+
si = self.step_index - (i + 1) # pyright: ignore
|
563 |
+
mi = model_output_list[-(i + 1)]
|
564 |
+
alpha_si, sigma_si = self._sigma_to_alpha_sigma_t(self.sigmas[si])
|
565 |
+
lambda_si = torch.log(alpha_si) - torch.log(sigma_si)
|
566 |
+
rk = (lambda_si - lambda_s0) / h
|
567 |
+
rks.append(rk)
|
568 |
+
D1s.append((mi - m0) / rk) # pyright: ignore
|
569 |
+
|
570 |
+
rks.append(1.0)
|
571 |
+
rks = torch.tensor(rks, device=device)
|
572 |
+
|
573 |
+
R = []
|
574 |
+
b = []
|
575 |
+
|
576 |
+
hh = -h if self.predict_x0 else h
|
577 |
+
h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1
|
578 |
+
h_phi_k = h_phi_1 / hh - 1
|
579 |
+
|
580 |
+
factorial_i = 1
|
581 |
+
|
582 |
+
if self.config.solver_type == "bh1":
|
583 |
+
B_h = hh
|
584 |
+
elif self.config.solver_type == "bh2":
|
585 |
+
B_h = torch.expm1(hh)
|
586 |
+
else:
|
587 |
+
raise NotImplementedError()
|
588 |
+
|
589 |
+
for i in range(1, order + 1):
|
590 |
+
R.append(torch.pow(rks, i - 1))
|
591 |
+
b.append(h_phi_k * factorial_i / B_h)
|
592 |
+
factorial_i *= i + 1
|
593 |
+
h_phi_k = h_phi_k / hh - 1 / factorial_i
|
594 |
+
|
595 |
+
R = torch.stack(R)
|
596 |
+
b = torch.tensor(b, device=device)
|
597 |
+
|
598 |
+
if len(D1s) > 0:
|
599 |
+
D1s = torch.stack(D1s, dim=1)
|
600 |
+
else:
|
601 |
+
D1s = None
|
602 |
+
|
603 |
+
# for order 1, we use a simplified version
|
604 |
+
if order == 1:
|
605 |
+
rhos_c = torch.tensor([0.5], dtype=x.dtype, device=device)
|
606 |
+
else:
|
607 |
+
rhos_c = torch.linalg.solve(R, b).to(device).to(x.dtype)
|
608 |
+
|
609 |
+
if self.predict_x0:
|
610 |
+
x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0
|
611 |
+
if D1s is not None:
|
612 |
+
corr_res = torch.einsum("k,bkc...->bc...", rhos_c[:-1], D1s)
|
613 |
+
else:
|
614 |
+
corr_res = 0
|
615 |
+
D1_t = model_t - m0
|
616 |
+
x_t = x_t_ - alpha_t * B_h * (corr_res + rhos_c[-1] * D1_t)
|
617 |
+
else:
|
618 |
+
x_t_ = alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0
|
619 |
+
if D1s is not None:
|
620 |
+
corr_res = torch.einsum("k,bkc...->bc...", rhos_c[:-1], D1s)
|
621 |
+
else:
|
622 |
+
corr_res = 0
|
623 |
+
D1_t = model_t - m0
|
624 |
+
x_t = x_t_ - sigma_t * B_h * (corr_res + rhos_c[-1] * D1_t)
|
625 |
+
x_t = x_t.to(x.dtype)
|
626 |
+
return x_t
|
627 |
+
|
628 |
+
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
629 |
+
if schedule_timesteps is None:
|
630 |
+
schedule_timesteps = self.timesteps
|
631 |
+
|
632 |
+
indices = (schedule_timesteps == timestep).nonzero()
|
633 |
+
|
634 |
+
# The sigma index that is taken for the **very** first `step`
|
635 |
+
# is always the second index (or the last index if there is only 1)
|
636 |
+
# This way we can ensure we don't accidentally skip a sigma in
|
637 |
+
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
638 |
+
pos = 1 if len(indices) > 1 else 0
|
639 |
+
|
640 |
+
return indices[pos].item()
|
641 |
+
|
642 |
+
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
|
643 |
+
def _init_step_index(self, timestep):
|
644 |
+
"""
|
645 |
+
Initialize the step_index counter for the scheduler.
|
646 |
+
"""
|
647 |
+
|
648 |
+
if self.begin_index is None:
|
649 |
+
if isinstance(timestep, torch.Tensor):
|
650 |
+
timestep = timestep.to(self.timesteps.device)
|
651 |
+
self._step_index = self.index_for_timestep(timestep)
|
652 |
+
else:
|
653 |
+
self._step_index = self._begin_index
|
654 |
+
|
655 |
+
def step(self,
|
656 |
+
model_output: torch.Tensor,
|
657 |
+
timestep: Union[int, torch.Tensor],
|
658 |
+
sample: torch.Tensor,
|
659 |
+
return_dict: bool = True,
|
660 |
+
generator=None) -> Union[SchedulerOutput, Tuple]:
|
661 |
+
"""
|
662 |
+
Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
|
663 |
+
the multistep UniPC.
|
664 |
+
|
665 |
+
Args:
|
666 |
+
model_output (`torch.Tensor`):
|
667 |
+
The direct output from learned diffusion model.
|
668 |
+
timestep (`int`):
|
669 |
+
The current discrete timestep in the diffusion chain.
|
670 |
+
sample (`torch.Tensor`):
|
671 |
+
A current instance of a sample created by the diffusion process.
|
672 |
+
return_dict (`bool`):
|
673 |
+
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
|
674 |
+
|
675 |
+
Returns:
|
676 |
+
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
|
677 |
+
If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
|
678 |
+
tuple is returned where the first element is the sample tensor.
|
679 |
+
|
680 |
+
"""
|
681 |
+
if self.num_inference_steps is None:
|
682 |
+
raise ValueError(
|
683 |
+
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
684 |
+
)
|
685 |
+
|
686 |
+
if self.step_index is None:
|
687 |
+
self._init_step_index(timestep)
|
688 |
+
|
689 |
+
use_corrector = (
|
690 |
+
self.step_index > 0 and
|
691 |
+
self.step_index - 1 not in self.disable_corrector and
|
692 |
+
self.last_sample is not None # pyright: ignore
|
693 |
+
)
|
694 |
+
|
695 |
+
model_output_convert = self.convert_model_output(
|
696 |
+
model_output, sample=sample)
|
697 |
+
if use_corrector:
|
698 |
+
sample = self.multistep_uni_c_bh_update(
|
699 |
+
this_model_output=model_output_convert,
|
700 |
+
last_sample=self.last_sample,
|
701 |
+
this_sample=sample,
|
702 |
+
order=self.this_order,
|
703 |
+
)
|
704 |
+
|
705 |
+
for i in range(self.config.solver_order - 1):
|
706 |
+
self.model_outputs[i] = self.model_outputs[i + 1]
|
707 |
+
self.timestep_list[i] = self.timestep_list[i + 1]
|
708 |
+
|
709 |
+
self.model_outputs[-1] = model_output_convert
|
710 |
+
self.timestep_list[-1] = timestep # pyright: ignore
|
711 |
+
|
712 |
+
if self.config.lower_order_final:
|
713 |
+
this_order = min(self.config.solver_order,
|
714 |
+
len(self.timesteps) -
|
715 |
+
self.step_index) # pyright: ignore
|
716 |
+
else:
|
717 |
+
this_order = self.config.solver_order
|
718 |
+
|
719 |
+
self.this_order = min(this_order,
|
720 |
+
self.lower_order_nums + 1) # warmup for multistep
|
721 |
+
assert self.this_order > 0
|
722 |
+
|
723 |
+
self.last_sample = sample
|
724 |
+
prev_sample = self.multistep_uni_p_bh_update(
|
725 |
+
model_output=model_output, # pass the original non-converted model output, in case solver-p is used
|
726 |
+
sample=sample,
|
727 |
+
order=self.this_order,
|
728 |
+
)
|
729 |
+
|
730 |
+
if self.lower_order_nums < self.config.solver_order:
|
731 |
+
self.lower_order_nums += 1
|
732 |
+
|
733 |
+
# upon completion increase step index by one
|
734 |
+
self._step_index += 1 # pyright: ignore
|
735 |
+
|
736 |
+
if not return_dict:
|
737 |
+
return (prev_sample,)
|
738 |
+
|
739 |
+
return SchedulerOutput(prev_sample=prev_sample)
|
740 |
+
|
741 |
+
def scale_model_input(self, sample: torch.Tensor, *args,
|
742 |
+
**kwargs) -> torch.Tensor:
|
743 |
+
"""
|
744 |
+
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
745 |
+
current timestep.
|
746 |
+
|
747 |
+
Args:
|
748 |
+
sample (`torch.Tensor`):
|
749 |
+
The input sample.
|
750 |
+
|
751 |
+
Returns:
|
752 |
+
`torch.Tensor`:
|
753 |
+
A scaled input sample.
|
754 |
+
"""
|
755 |
+
return sample
|
756 |
+
|
757 |
+
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.add_noise
|
758 |
+
def add_noise(
|
759 |
+
self,
|
760 |
+
original_samples: torch.Tensor,
|
761 |
+
noise: torch.Tensor,
|
762 |
+
timesteps: torch.IntTensor,
|
763 |
+
) -> torch.Tensor:
|
764 |
+
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
765 |
+
sigmas = self.sigmas.to(
|
766 |
+
device=original_samples.device, dtype=original_samples.dtype)
|
767 |
+
if original_samples.device.type == "mps" and torch.is_floating_point(
|
768 |
+
timesteps):
|
769 |
+
# mps does not support float64
|
770 |
+
schedule_timesteps = self.timesteps.to(
|
771 |
+
original_samples.device, dtype=torch.float32)
|
772 |
+
timesteps = timesteps.to(
|
773 |
+
original_samples.device, dtype=torch.float32)
|
774 |
+
else:
|
775 |
+
schedule_timesteps = self.timesteps.to(original_samples.device)
|
776 |
+
timesteps = timesteps.to(original_samples.device)
|
777 |
+
|
778 |
+
# begin_index is None when the scheduler is used for training or pipeline does not implement set_begin_index
|
779 |
+
if self.begin_index is None:
|
780 |
+
step_indices = [
|
781 |
+
self.index_for_timestep(t, schedule_timesteps)
|
782 |
+
for t in timesteps
|
783 |
+
]
|
784 |
+
elif self.step_index is not None:
|
785 |
+
# add_noise is called after first denoising step (for inpainting)
|
786 |
+
step_indices = [self.step_index] * timesteps.shape[0]
|
787 |
+
else:
|
788 |
+
# add noise is called before first denoising step to create initial latent(img2img)
|
789 |
+
step_indices = [self.begin_index] * timesteps.shape[0]
|
790 |
+
|
791 |
+
sigma = sigmas[step_indices].flatten()
|
792 |
+
while len(sigma.shape) < len(original_samples.shape):
|
793 |
+
sigma = sigma.unsqueeze(-1)
|
794 |
+
|
795 |
+
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
|
796 |
+
noisy_samples = alpha_t * original_samples + sigma_t * noise
|
797 |
+
return noisy_samples
|
798 |
+
|
799 |
+
def __len__(self):
|
800 |
+
return self.config.num_train_timesteps
|
inference.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import argparse
|
3 |
+
from hi_diffusers import HiDreamImagePipeline
|
4 |
+
from hi_diffusers import HiDreamImageTransformer2DModel
|
5 |
+
from hi_diffusers.schedulers.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
6 |
+
from hi_diffusers.schedulers.flash_flow_match import FlashFlowMatchEulerDiscreteScheduler
|
7 |
+
from transformers import LlamaForCausalLM, PreTrainedTokenizerFast
|
8 |
+
parser = argparse.ArgumentParser()
|
9 |
+
parser.add_argument("--model_type", type=str, default="dev")
|
10 |
+
args = parser.parse_args()
|
11 |
+
model_type = args.model_type
|
12 |
+
MODEL_PREFIX = "HiDream-ai"
|
13 |
+
LLAMA_MODEL_NAME = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
14 |
+
|
15 |
+
# Model configurations
|
16 |
+
MODEL_CONFIGS = {
|
17 |
+
"dev": {
|
18 |
+
"path": f"{MODEL_PREFIX}/HiDream-I1-Dev",
|
19 |
+
"guidance_scale": 0.0,
|
20 |
+
"num_inference_steps": 28,
|
21 |
+
"shift": 6.0,
|
22 |
+
"scheduler": FlashFlowMatchEulerDiscreteScheduler
|
23 |
+
},
|
24 |
+
"full": {
|
25 |
+
"path": f"{MODEL_PREFIX}/HiDream-I1-Full",
|
26 |
+
"guidance_scale": 5.0,
|
27 |
+
"num_inference_steps": 50,
|
28 |
+
"shift": 3.0,
|
29 |
+
"scheduler": FlowUniPCMultistepScheduler
|
30 |
+
},
|
31 |
+
"fast": {
|
32 |
+
"path": f"{MODEL_PREFIX}/HiDream-I1-Fast",
|
33 |
+
"guidance_scale": 0.0,
|
34 |
+
"num_inference_steps": 16,
|
35 |
+
"shift": 3.0,
|
36 |
+
"scheduler": FlashFlowMatchEulerDiscreteScheduler
|
37 |
+
}
|
38 |
+
}
|
39 |
+
|
40 |
+
# Resolution options
|
41 |
+
RESOLUTION_OPTIONS = [
|
42 |
+
"1024 Γ 1024 (Square)",
|
43 |
+
"768 Γ 1360 (Portrait)",
|
44 |
+
"1360 Γ 768 (Landscape)",
|
45 |
+
"880 Γ 1168 (Portrait)",
|
46 |
+
"1168 Γ 880 (Landscape)",
|
47 |
+
"1248 Γ 832 (Landscape)",
|
48 |
+
"832 Γ 1248 (Portrait)"
|
49 |
+
]
|
50 |
+
|
51 |
+
# Load models
|
52 |
+
def load_models(model_type):
|
53 |
+
config = MODEL_CONFIGS[model_type]
|
54 |
+
pretrained_model_name_or_path = config["path"]
|
55 |
+
scheduler = FlowUniPCMultistepScheduler(num_train_timesteps=1000, shift=config["shift"], use_dynamic_shifting=False)
|
56 |
+
|
57 |
+
tokenizer_4 = PreTrainedTokenizerFast.from_pretrained(
|
58 |
+
LLAMA_MODEL_NAME,
|
59 |
+
use_fast=False)
|
60 |
+
|
61 |
+
text_encoder_4 = LlamaForCausalLM.from_pretrained(
|
62 |
+
LLAMA_MODEL_NAME,
|
63 |
+
output_hidden_states=True,
|
64 |
+
output_attentions=True,
|
65 |
+
torch_dtype=torch.bfloat16).to("cuda")
|
66 |
+
|
67 |
+
transformer = HiDreamImageTransformer2DModel.from_pretrained(
|
68 |
+
pretrained_model_name_or_path,
|
69 |
+
subfolder="transformer",
|
70 |
+
torch_dtype=torch.bfloat16).to("cuda")
|
71 |
+
|
72 |
+
pipe = HiDreamImagePipeline.from_pretrained(
|
73 |
+
pretrained_model_name_or_path,
|
74 |
+
scheduler=scheduler,
|
75 |
+
tokenizer_4=tokenizer_4,
|
76 |
+
text_encoder_4=text_encoder_4,
|
77 |
+
torch_dtype=torch.bfloat16
|
78 |
+
).to("cuda", torch.bfloat16)
|
79 |
+
pipe.transformer = transformer
|
80 |
+
|
81 |
+
return pipe, config
|
82 |
+
|
83 |
+
# Parse resolution string to get height and width
|
84 |
+
def parse_resolution(resolution_str):
|
85 |
+
if "1024 Γ 1024" in resolution_str:
|
86 |
+
return 1024, 1024
|
87 |
+
elif "768 Γ 1360" in resolution_str:
|
88 |
+
return 768, 1360
|
89 |
+
elif "1360 Γ 768" in resolution_str:
|
90 |
+
return 1360, 768
|
91 |
+
elif "880 Γ 1168" in resolution_str:
|
92 |
+
return 880, 1168
|
93 |
+
elif "1168 Γ 880" in resolution_str:
|
94 |
+
return 1168, 880
|
95 |
+
elif "1248 Γ 832" in resolution_str:
|
96 |
+
return 1248, 832
|
97 |
+
elif "832 Γ 1248" in resolution_str:
|
98 |
+
return 832, 1248
|
99 |
+
else:
|
100 |
+
return 1024, 1024 # Default fallback
|
101 |
+
|
102 |
+
# Generate image function
|
103 |
+
def generate_image(pipe, model_type, prompt, resolution, seed):
|
104 |
+
# Get configuration for current model
|
105 |
+
config = MODEL_CONFIGS[model_type]
|
106 |
+
guidance_scale = config["guidance_scale"]
|
107 |
+
num_inference_steps = config["num_inference_steps"]
|
108 |
+
|
109 |
+
# Parse resolution
|
110 |
+
height, width = parse_resolution(resolution)
|
111 |
+
|
112 |
+
# Handle seed
|
113 |
+
if seed == -1:
|
114 |
+
seed = torch.randint(0, 1000000, (1,)).item()
|
115 |
+
|
116 |
+
generator = torch.Generator("cuda").manual_seed(seed)
|
117 |
+
|
118 |
+
images = pipe(
|
119 |
+
prompt,
|
120 |
+
height=height,
|
121 |
+
width=width,
|
122 |
+
guidance_scale=guidance_scale,
|
123 |
+
num_inference_steps=num_inference_steps,
|
124 |
+
num_images_per_prompt=1,
|
125 |
+
generator=generator
|
126 |
+
).images
|
127 |
+
|
128 |
+
return images[0], seed
|
129 |
+
|
130 |
+
# Initialize with default model
|
131 |
+
print("Loading default model (full)...")
|
132 |
+
pipe, _ = load_models(model_type)
|
133 |
+
print("Model loaded successfully!")
|
134 |
+
prompt = "A cat holding a sign that says \"Hi-Dreams.ai\"."
|
135 |
+
resolution = "1024 Γ 1024 (Square)"
|
136 |
+
seed = -1
|
137 |
+
image, seed = generate_image(pipe, model_type, prompt, resolution, seed)
|
138 |
+
image.save("output.png")
|
pyproject.toml
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[project]
|
2 |
+
name = "hidream-ai"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = "Add your description here"
|
5 |
+
readme = "README.md"
|
6 |
+
requires-python = ">=3.12"
|
7 |
+
dependencies = [
|
8 |
+
"accelerate>=1.6.0",
|
9 |
+
"diffusers>=0.32.1",
|
10 |
+
"einops>=0.7.0",
|
11 |
+
"torch>=2.5.1",
|
12 |
+
"torchvision>=0.20.1",
|
13 |
+
"transformers>=4.47.1",
|
14 |
+
]
|
15 |
+
|
16 |
+
# https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.4.post1/flash_attn-2.7.4.post1+cu12torch2.4cxx11abiTRUE-cp310-cp310-linux_x86_64.whl
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch>=2.5.1
|
2 |
+
torchvision>=0.20.1
|
3 |
+
diffusers>=0.32.1
|
4 |
+
transformers>=4.47.1
|
5 |
+
accelerate>=1.6.0
|
6 |
+
xformers
|
7 |
+
https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.4.post1/flash_attn-2.7.4.post1+cu12torch2.4cxx11abiTRUE-cp310-cp310-linux_x86_64.whl
|
8 |
+
einops>=0.7.0
|
9 |
+
gradio>=5.23.3
|
10 |
+
spaces>=0.34.1
|
uv.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|