Spaces:
Paused
Paused
import gradio as gr | |
import spaces | |
import torch | |
from hi_diffusers import HiDreamImagePipeline, HiDreamImageTransformer2DModel | |
from hi_diffusers.schedulers.flash_flow_match import ( | |
FlashFlowMatchEulerDiscreteScheduler, | |
) | |
from transformers import LlamaForCausalLM, PreTrainedTokenizerFast | |
# Constants | |
MODEL_PREFIX: str = "HiDream-ai" | |
LLAMA_MODEL_NAME: str = "meta-llama/Meta-Llama-3.1-8B-Instruct" | |
MODEL_PATH = "HiDream-ai/HiDream-I1-Dev" | |
MODEL_CONFIGS: dict[str, dict] = { | |
"guidance_scale": 0.0, | |
"num_inference_steps": 28, | |
"shift": 6.0, | |
"scheduler": FlashFlowMatchEulerDiscreteScheduler, | |
} | |
# Model configurations | |
# MODEL_CONFIGS: dict[str, dict] = { | |
# "full": { | |
# "path": f"{MODEL_PREFIX}/HiDream-I1-Full", | |
# "guidance_scale": 5.0, | |
# "num_inference_steps": 50, | |
# "shift": 3.0, | |
# "scheduler": FlowUniPCMultistepScheduler, | |
# }, | |
# "fast": { | |
# "path": f"{MODEL_PREFIX}/HiDream-I1-Fast", | |
# "guidance_scale": 0.0, | |
# "num_inference_steps": 16, | |
# "shift": 3.0, | |
# "scheduler": FlashFlowMatchEulerDiscreteScheduler, | |
# }, | |
# } | |
# Supported image sizes | |
RESOLUTION_OPTIONS: list[str] = [ | |
"1024 x 1024 (Square)", | |
"768 x 1360 (Portrait)", | |
"1360 x 768 (Landscape)", | |
"880 x 1168 (Portrait)", | |
"1168 x 880 (Landscape)", | |
"1248 x 832 (Landscape)", | |
"832 x 1248 (Portrait)", | |
] | |
def parse_resolution(res_str: str) -> tuple[int, int]: | |
return tuple(map(int, res_str.replace(" ", "").split("x"))) | |
tokenizer = PreTrainedTokenizerFast.from_pretrained(LLAMA_MODEL_NAME, use_fast=False) | |
text_encoder = LlamaForCausalLM.from_pretrained( | |
LLAMA_MODEL_NAME, | |
output_hidden_states=True, | |
output_attentions=True, | |
torch_dtype=torch.bfloat16, | |
).to("cuda") | |
transformer = HiDreamImageTransformer2DModel.from_pretrained( | |
MODEL_PATH, | |
subfolder="transformer", | |
torch_dtype=torch.bfloat16, | |
).to("cuda") | |
scheduler = MODEL_CONFIGS["scheduler"]( | |
num_train_timesteps=1000, | |
shift=MODEL_CONFIGS["shift"], | |
use_dynamic_shifting=False, | |
) | |
pipe = HiDreamImagePipeline.from_pretrained( | |
MODEL_PATH, | |
scheduler=scheduler, | |
tokenizer_4=tokenizer, | |
text_encoder_4=text_encoder, | |
torch_dtype=torch.bfloat16, | |
).to("cuda", torch.bfloat16) | |
pipe.transformer = transformer | |
def generate_image( | |
model_type: str, | |
prompt: str, | |
resolution: str, | |
seed: int, | |
) -> tuple[object, int]: | |
config = MODEL_CONFIGS[model_type] | |
if seed == -1: | |
seed = torch.randint(0, 1_000_000, (1,)).item() | |
height, width = parse_resolution(resolution) | |
generator = torch.Generator("cuda").manual_seed(seed) | |
image = pipe( | |
prompt=prompt, | |
height=height, | |
width=width, | |
guidance_scale=config["guidance_scale"], | |
num_inference_steps=config["num_inference_steps"], | |
generator=generator, | |
).images[0] | |
torch.cuda.empty_cache() | |
return image, seed | |
# Gradio UI | |
with gr.Blocks(title="HiDream Image Generator") as demo: | |
gr.Markdown("## 🌈 HiDream Image Generator") | |
with gr.Row(): | |
with gr.Column(): | |
model_type = gr.Radio( | |
choices=list(MODEL_CONFIGS.keys()), | |
value="full", | |
label="Model Type", | |
info="Choose between full, fast or dev variants", | |
) | |
prompt = gr.Textbox( | |
label="Prompt", | |
placeholder="e.g. A futuristic city with floating cars at sunset", | |
lines=3, | |
) | |
resolution = gr.Radio( | |
choices=RESOLUTION_OPTIONS, | |
value=RESOLUTION_OPTIONS[0], | |
label="Resolution", | |
) | |
seed = gr.Number(label="Seed (-1 for random)", value=-1, precision=0) | |
generate_btn = gr.Button("Generate Image", variant="primary") | |
seed_used = gr.Number(label="Seed Used", interactive=False) | |
with gr.Column(): | |
output_image = gr.Image(label="Generated Image", type="pil") | |
generate_btn.click( | |
fn=generate_image, | |
inputs=[model_type, prompt, resolution, seed], | |
outputs=[output_image, seed_used], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |