File size: 4,270 Bytes
8feabfd
 
 
 
 
 
 
 
 
 
 
 
9af0e64
8feabfd
9af0e64
 
 
 
8feabfd
 
9af0e64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8feabfd
 
9af0e64
 
 
 
 
 
 
8feabfd
 
 
 
9af0e64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8feabfd
9af0e64
 
 
 
 
 
 
8feabfd
9af0e64
8feabfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import gradio as gr
import spaces
import torch
from hi_diffusers import HiDreamImagePipeline, HiDreamImageTransformer2DModel
from hi_diffusers.schedulers.flash_flow_match import (
    FlashFlowMatchEulerDiscreteScheduler,
)
from transformers import LlamaForCausalLM, PreTrainedTokenizerFast

# Constants
MODEL_PREFIX: str = "HiDream-ai"
LLAMA_MODEL_NAME: str = "meta-llama/Meta-Llama-3.1-8B-Instruct"
MODEL_PATH = "HiDream-ai/HiDream-I1-Dev"
MODEL_CONFIGS: dict[str, dict] = {
    "guidance_scale": 0.0,
    "num_inference_steps": 28,
    "shift": 6.0,
    "scheduler": FlashFlowMatchEulerDiscreteScheduler,
}

# Model configurations
# MODEL_CONFIGS: dict[str, dict] = {
#     "full": {
#         "path": f"{MODEL_PREFIX}/HiDream-I1-Full",
#         "guidance_scale": 5.0,
#         "num_inference_steps": 50,
#         "shift": 3.0,
#         "scheduler": FlowUniPCMultistepScheduler,
#     },
#     "fast": {
#         "path": f"{MODEL_PREFIX}/HiDream-I1-Fast",
#         "guidance_scale": 0.0,
#         "num_inference_steps": 16,
#         "shift": 3.0,
#         "scheduler": FlashFlowMatchEulerDiscreteScheduler,
#     },
# }

# Supported image sizes
RESOLUTION_OPTIONS: list[str] = [
    "1024 x 1024 (Square)",
    "768 x 1360 (Portrait)",
    "1360 x 768 (Landscape)",
    "880 x 1168 (Portrait)",
    "1168 x 880 (Landscape)",
    "1248 x 832 (Landscape)",
    "832 x 1248 (Portrait)",
]


def parse_resolution(res_str: str) -> tuple[int, int]:
    return tuple(map(int, res_str.replace(" ", "").split("x")))


tokenizer = PreTrainedTokenizerFast.from_pretrained(LLAMA_MODEL_NAME, use_fast=False)
text_encoder = LlamaForCausalLM.from_pretrained(
    LLAMA_MODEL_NAME,
    output_hidden_states=True,
    output_attentions=True,
    torch_dtype=torch.bfloat16,
).to("cuda")

transformer = HiDreamImageTransformer2DModel.from_pretrained(
    MODEL_PATH,
    subfolder="transformer",
    torch_dtype=torch.bfloat16,
).to("cuda")

scheduler = MODEL_CONFIGS["scheduler"](
    num_train_timesteps=1000,
    shift=MODEL_CONFIGS["shift"],
    use_dynamic_shifting=False,
)

pipe = HiDreamImagePipeline.from_pretrained(
    MODEL_PATH,
    scheduler=scheduler,
    tokenizer_4=tokenizer,
    text_encoder_4=text_encoder,
    torch_dtype=torch.bfloat16,
).to("cuda", torch.bfloat16)

pipe.transformer = transformer


@spaces.GPU(duration=90)
def generate_image(
    model_type: str,
    prompt: str,
    resolution: str,
    seed: int,
) -> tuple[object, int]:
    config = MODEL_CONFIGS[model_type]

    if seed == -1:
        seed = torch.randint(0, 1_000_000, (1,)).item()

    height, width = parse_resolution(resolution)
    generator = torch.Generator("cuda").manual_seed(seed)

    image = pipe(
        prompt=prompt,
        height=height,
        width=width,
        guidance_scale=config["guidance_scale"],
        num_inference_steps=config["num_inference_steps"],
        generator=generator,
    ).images[0]

    torch.cuda.empty_cache()
    return image, seed


# Gradio UI
with gr.Blocks(title="HiDream Image Generator") as demo:
    gr.Markdown("## 🌈 HiDream Image Generator")

    with gr.Row():
        with gr.Column():
            model_type = gr.Radio(
                choices=list(MODEL_CONFIGS.keys()),
                value="full",
                label="Model Type",
                info="Choose between full, fast or dev variants",
            )

            prompt = gr.Textbox(
                label="Prompt",
                placeholder="e.g. A futuristic city with floating cars at sunset",
                lines=3,
            )

            resolution = gr.Radio(
                choices=RESOLUTION_OPTIONS,
                value=RESOLUTION_OPTIONS[0],
                label="Resolution",
            )

            seed = gr.Number(label="Seed (-1 for random)", value=-1, precision=0)
            generate_btn = gr.Button("Generate Image", variant="primary")
            seed_used = gr.Number(label="Seed Used", interactive=False)

        with gr.Column():
            output_image = gr.Image(label="Generated Image", type="pil")

    generate_btn.click(
        fn=generate_image,
        inputs=[model_type, prompt, resolution, seed],
        outputs=[output_image, seed_used],
    )

if __name__ == "__main__":
    demo.launch()