Spaces:
Runtime error
Runtime error
Create model.py
Browse files
model.py
ADDED
@@ -0,0 +1,509 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import math
|
6 |
+
|
7 |
+
from torch.nn.init import _calculate_fan_in_and_fan_out
|
8 |
+
from timm.models.layers import to_2tuple, trunc_normal_
|
9 |
+
|
10 |
+
import torchvision.transforms as transforms
|
11 |
+
from torchvision import models
|
12 |
+
|
13 |
+
import gradio as gr
|
14 |
+
from PIL import Image
|
15 |
+
import numpy as np
|
16 |
+
from matplotlib import pyplot as plt
|
17 |
+
|
18 |
+
class RLN(nn.Module):
|
19 |
+
r"""Revised LayerNorm"""
|
20 |
+
def __init__(self, dim, eps=1e-5, detach_grad=False):
|
21 |
+
super(RLN, self).__init__()
|
22 |
+
self.eps = eps
|
23 |
+
self.detach_grad = detach_grad
|
24 |
+
|
25 |
+
self.weight = nn.Parameter(torch.ones((1, dim, 1, 1)))
|
26 |
+
self.bias = nn.Parameter(torch.zeros((1, dim, 1, 1)))
|
27 |
+
|
28 |
+
self.meta1 = nn.Conv2d(1, dim, 1)
|
29 |
+
self.meta2 = nn.Conv2d(1, dim, 1)
|
30 |
+
|
31 |
+
trunc_normal_(self.meta1.weight, std=.02)
|
32 |
+
nn.init.constant_(self.meta1.bias, 1)
|
33 |
+
|
34 |
+
trunc_normal_(self.meta2.weight, std=.02)
|
35 |
+
nn.init.constant_(self.meta2.bias, 0)
|
36 |
+
|
37 |
+
def forward(self, input):
|
38 |
+
mean = torch.mean(input, dim=(1, 2, 3), keepdim=True)
|
39 |
+
std = torch.sqrt((input - mean).pow(2).mean(dim=(1, 2, 3), keepdim=True) + self.eps)
|
40 |
+
|
41 |
+
normalized_input = (input - mean) / std
|
42 |
+
|
43 |
+
if self.detach_grad:
|
44 |
+
rescale, rebias = self.meta1(std.detach()), self.meta2(mean.detach())
|
45 |
+
else:
|
46 |
+
rescale, rebias = self.meta1(std), self.meta2(mean)
|
47 |
+
|
48 |
+
out = normalized_input * self.weight + self.bias
|
49 |
+
return out, rescale, rebias
|
50 |
+
|
51 |
+
|
52 |
+
class Mlp(nn.Module):
|
53 |
+
def __init__(self, network_depth, in_features, hidden_features=None, out_features=None):
|
54 |
+
super().__init__()
|
55 |
+
out_features = out_features or in_features
|
56 |
+
hidden_features = hidden_features or in_features
|
57 |
+
|
58 |
+
self.network_depth = network_depth
|
59 |
+
|
60 |
+
self.mlp = nn.Sequential(
|
61 |
+
nn.Conv2d(in_features, hidden_features, 1),
|
62 |
+
nn.ReLU(True),
|
63 |
+
nn.Conv2d(hidden_features, out_features, 1)
|
64 |
+
)
|
65 |
+
|
66 |
+
self.apply(self._init_weights)
|
67 |
+
|
68 |
+
def _init_weights(self, m):
|
69 |
+
if isinstance(m, nn.Conv2d):
|
70 |
+
gain = (8 * self.network_depth) ** (-1/4)
|
71 |
+
fan_in, fan_out = _calculate_fan_in_and_fan_out(m.weight)
|
72 |
+
std = gain * math.sqrt(2.0 / float(fan_in + fan_out))
|
73 |
+
trunc_normal_(m.weight, std=std)
|
74 |
+
if m.bias is not None:
|
75 |
+
nn.init.constant_(m.bias, 0)
|
76 |
+
|
77 |
+
def forward(self, x):
|
78 |
+
return self.mlp(x)
|
79 |
+
|
80 |
+
|
81 |
+
def window_partition(x, window_size):
|
82 |
+
B, H, W, C = x.shape
|
83 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
84 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size**2, C)
|
85 |
+
return windows
|
86 |
+
|
87 |
+
|
88 |
+
def window_reverse(windows, window_size, H, W):
|
89 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
90 |
+
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
91 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
92 |
+
return x
|
93 |
+
|
94 |
+
|
95 |
+
def get_relative_positions(window_size):
|
96 |
+
coords_h = torch.arange(window_size)
|
97 |
+
coords_w = torch.arange(window_size)
|
98 |
+
|
99 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
100 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
101 |
+
relative_positions = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
102 |
+
|
103 |
+
relative_positions = relative_positions.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
104 |
+
relative_positions_log = torch.sign(relative_positions) * torch.log(1. + relative_positions.abs())
|
105 |
+
|
106 |
+
return relative_positions_log
|
107 |
+
|
108 |
+
|
109 |
+
class WindowAttention(nn.Module):
|
110 |
+
def __init__(self, dim, window_size, num_heads):
|
111 |
+
|
112 |
+
super().__init__()
|
113 |
+
self.dim = dim
|
114 |
+
self.window_size = window_size # Wh, Ww
|
115 |
+
self.num_heads = num_heads
|
116 |
+
head_dim = dim // num_heads
|
117 |
+
self.scale = head_dim ** -0.5
|
118 |
+
|
119 |
+
relative_positions = get_relative_positions(self.window_size)
|
120 |
+
self.register_buffer("relative_positions", relative_positions)
|
121 |
+
self.meta = nn.Sequential(
|
122 |
+
nn.Linear(2, 256, bias=True),
|
123 |
+
nn.ReLU(True),
|
124 |
+
nn.Linear(256, num_heads, bias=True)
|
125 |
+
)
|
126 |
+
|
127 |
+
self.softmax = nn.Softmax(dim=-1)
|
128 |
+
|
129 |
+
def forward(self, qkv):
|
130 |
+
B_, N, _ = qkv.shape
|
131 |
+
|
132 |
+
qkv = qkv.reshape(B_, N, 3, self.num_heads, self.dim // self.num_heads).permute(2, 0, 3, 1, 4)
|
133 |
+
|
134 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
135 |
+
|
136 |
+
q = q * self.scale
|
137 |
+
attn = (q @ k.transpose(-2, -1))
|
138 |
+
|
139 |
+
relative_position_bias = self.meta(self.relative_positions)
|
140 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
141 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
142 |
+
|
143 |
+
attn = self.softmax(attn)
|
144 |
+
|
145 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, self.dim)
|
146 |
+
return x
|
147 |
+
|
148 |
+
|
149 |
+
class Attention(nn.Module):
|
150 |
+
def __init__(self, network_depth, dim, num_heads, window_size, shift_size, use_attn=False, conv_type=None):
|
151 |
+
super().__init__()
|
152 |
+
self.dim = dim
|
153 |
+
self.head_dim = int(dim // num_heads)
|
154 |
+
self.num_heads = num_heads
|
155 |
+
|
156 |
+
self.window_size = window_size
|
157 |
+
self.shift_size = shift_size
|
158 |
+
|
159 |
+
self.network_depth = network_depth
|
160 |
+
self.use_attn = use_attn
|
161 |
+
self.conv_type = conv_type
|
162 |
+
|
163 |
+
if self.conv_type == 'Conv':
|
164 |
+
self.conv = nn.Sequential(
|
165 |
+
nn.Conv2d(dim, dim, kernel_size=3, padding=1, padding_mode='reflect'),
|
166 |
+
nn.ReLU(True),
|
167 |
+
nn.Conv2d(dim, dim, kernel_size=3, padding=1, padding_mode='reflect')
|
168 |
+
)
|
169 |
+
|
170 |
+
if self.conv_type == 'DWConv':
|
171 |
+
self.conv = nn.Conv2d(dim, dim, kernel_size=5, padding=2, groups=dim, padding_mode='reflect')
|
172 |
+
|
173 |
+
if self.conv_type == 'DWConv' or self.use_attn:
|
174 |
+
self.V = nn.Conv2d(dim, dim, 1)
|
175 |
+
self.proj = nn.Conv2d(dim, dim, 1)
|
176 |
+
|
177 |
+
if self.use_attn:
|
178 |
+
self.QK = nn.Conv2d(dim, dim * 2, 1)
|
179 |
+
self.attn = WindowAttention(dim, window_size, num_heads)
|
180 |
+
|
181 |
+
self.apply(self._init_weights)
|
182 |
+
|
183 |
+
def _init_weights(self, m):
|
184 |
+
if isinstance(m, nn.Conv2d):
|
185 |
+
w_shape = m.weight.shape
|
186 |
+
|
187 |
+
if w_shape[0] == self.dim * 2: # QK
|
188 |
+
fan_in, fan_out = _calculate_fan_in_and_fan_out(m.weight)
|
189 |
+
std = math.sqrt(2.0 / float(fan_in + fan_out))
|
190 |
+
trunc_normal_(m.weight, std=std)
|
191 |
+
else:
|
192 |
+
gain = (8 * self.network_depth) ** (-1/4)
|
193 |
+
fan_in, fan_out = _calculate_fan_in_and_fan_out(m.weight)
|
194 |
+
std = gain * math.sqrt(2.0 / float(fan_in + fan_out))
|
195 |
+
trunc_normal_(m.weight, std=std)
|
196 |
+
|
197 |
+
if m.bias is not None:
|
198 |
+
nn.init.constant_(m.bias, 0)
|
199 |
+
|
200 |
+
def check_size(self, x, shift=False):
|
201 |
+
_, _, h, w = x.size()
|
202 |
+
mod_pad_h = (self.window_size - h % self.window_size) % self.window_size
|
203 |
+
mod_pad_w = (self.window_size - w % self.window_size) % self.window_size
|
204 |
+
|
205 |
+
if shift:
|
206 |
+
x = F.pad(x, (self.shift_size, (self.window_size-self.shift_size+mod_pad_w) % self.window_size,
|
207 |
+
self.shift_size, (self.window_size-self.shift_size+mod_pad_h) % self.window_size), mode='reflect')
|
208 |
+
else:
|
209 |
+
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect')
|
210 |
+
return x
|
211 |
+
|
212 |
+
def forward(self, X):
|
213 |
+
B, C, H, W = X.shape
|
214 |
+
|
215 |
+
if self.conv_type == 'DWConv' or self.use_attn:
|
216 |
+
V = self.V(X)
|
217 |
+
|
218 |
+
if self.use_attn:
|
219 |
+
QK = self.QK(X)
|
220 |
+
QKV = torch.cat([QK, V], dim=1)
|
221 |
+
|
222 |
+
# shift
|
223 |
+
shifted_QKV = self.check_size(QKV, self.shift_size > 0)
|
224 |
+
Ht, Wt = shifted_QKV.shape[2:]
|
225 |
+
|
226 |
+
# partition windows
|
227 |
+
shifted_QKV = shifted_QKV.permute(0, 2, 3, 1)
|
228 |
+
qkv = window_partition(shifted_QKV, self.window_size) # nW*B, window_size**2, C
|
229 |
+
|
230 |
+
attn_windows = self.attn(qkv)
|
231 |
+
|
232 |
+
# merge windows
|
233 |
+
shifted_out = window_reverse(attn_windows, self.window_size, Ht, Wt) # B H' W' C
|
234 |
+
|
235 |
+
# reverse cyclic shift
|
236 |
+
out = shifted_out[:, self.shift_size:(self.shift_size+H), self.shift_size:(self.shift_size+W), :]
|
237 |
+
attn_out = out.permute(0, 3, 1, 2)
|
238 |
+
|
239 |
+
if self.conv_type in ['Conv', 'DWConv']:
|
240 |
+
conv_out = self.conv(V)
|
241 |
+
out = self.proj(conv_out + attn_out)
|
242 |
+
else:
|
243 |
+
out = self.proj(attn_out)
|
244 |
+
|
245 |
+
else:
|
246 |
+
if self.conv_type == 'Conv':
|
247 |
+
out = self.conv(X) # no attention and use conv, no projection
|
248 |
+
elif self.conv_type == 'DWConv':
|
249 |
+
out = self.proj(self.conv(V))
|
250 |
+
|
251 |
+
return out
|
252 |
+
|
253 |
+
|
254 |
+
class TransformerBlock(nn.Module):
|
255 |
+
def __init__(self, network_depth, dim, num_heads, mlp_ratio=4.,
|
256 |
+
norm_layer=nn.LayerNorm, mlp_norm=False,
|
257 |
+
window_size=8, shift_size=0, use_attn=True, conv_type=None):
|
258 |
+
super().__init__()
|
259 |
+
self.use_attn = use_attn
|
260 |
+
self.mlp_norm = mlp_norm
|
261 |
+
|
262 |
+
self.norm1 = norm_layer(dim) if use_attn else nn.Identity()
|
263 |
+
self.attn = Attention(network_depth, dim, num_heads=num_heads, window_size=window_size,
|
264 |
+
shift_size=shift_size, use_attn=use_attn, conv_type=conv_type)
|
265 |
+
|
266 |
+
self.norm2 = norm_layer(dim) if use_attn and mlp_norm else nn.Identity()
|
267 |
+
self.mlp = Mlp(network_depth, dim, hidden_features=int(dim * mlp_ratio))
|
268 |
+
|
269 |
+
def forward(self, x):
|
270 |
+
identity = x
|
271 |
+
if self.use_attn: x, rescale, rebias = self.norm1(x)
|
272 |
+
x = self.attn(x)
|
273 |
+
if self.use_attn: x = x * rescale + rebias
|
274 |
+
x = identity + x
|
275 |
+
|
276 |
+
identity = x
|
277 |
+
if self.use_attn and self.mlp_norm: x, rescale, rebias = self.norm2(x)
|
278 |
+
x = self.mlp(x)
|
279 |
+
if self.use_attn and self.mlp_norm: x = x * rescale + rebias
|
280 |
+
x = identity + x
|
281 |
+
return x
|
282 |
+
|
283 |
+
|
284 |
+
class BasicLayer(nn.Module):
|
285 |
+
def __init__(self, network_depth, dim, depth, num_heads, mlp_ratio=4.,
|
286 |
+
norm_layer=nn.LayerNorm, window_size=8,
|
287 |
+
attn_ratio=0., attn_loc='last', conv_type=None):
|
288 |
+
|
289 |
+
super().__init__()
|
290 |
+
self.dim = dim
|
291 |
+
self.depth = depth
|
292 |
+
|
293 |
+
attn_depth = attn_ratio * depth
|
294 |
+
|
295 |
+
if attn_loc == 'last':
|
296 |
+
use_attns = [i >= depth-attn_depth for i in range(depth)]
|
297 |
+
elif attn_loc == 'first':
|
298 |
+
use_attns = [i < attn_depth for i in range(depth)]
|
299 |
+
elif attn_loc == 'middle':
|
300 |
+
use_attns = [i >= (depth-attn_depth)//2 and i < (depth+attn_depth)//2 for i in range(depth)]
|
301 |
+
|
302 |
+
# build blocks
|
303 |
+
self.blocks = nn.ModuleList([
|
304 |
+
TransformerBlock(network_depth=network_depth,
|
305 |
+
dim=dim,
|
306 |
+
num_heads=num_heads,
|
307 |
+
mlp_ratio=mlp_ratio,
|
308 |
+
norm_layer=norm_layer,
|
309 |
+
window_size=window_size,
|
310 |
+
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
311 |
+
use_attn=use_attns[i], conv_type=conv_type)
|
312 |
+
for i in range(depth)])
|
313 |
+
|
314 |
+
def forward(self, x):
|
315 |
+
for blk in self.blocks:
|
316 |
+
x = blk(x)
|
317 |
+
return x
|
318 |
+
|
319 |
+
|
320 |
+
class PatchEmbed(nn.Module):
|
321 |
+
def __init__(self, patch_size=4, in_chans=3, embed_dim=96, kernel_size=None):
|
322 |
+
super().__init__()
|
323 |
+
self.in_chans = in_chans
|
324 |
+
self.embed_dim = embed_dim
|
325 |
+
|
326 |
+
if kernel_size is None:
|
327 |
+
kernel_size = patch_size
|
328 |
+
|
329 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=patch_size,
|
330 |
+
padding=(kernel_size-patch_size+1)//2, padding_mode='reflect')
|
331 |
+
|
332 |
+
def forward(self, x):
|
333 |
+
x = self.proj(x)
|
334 |
+
return x
|
335 |
+
|
336 |
+
|
337 |
+
class PatchUnEmbed(nn.Module):
|
338 |
+
def __init__(self, patch_size=4, out_chans=3, embed_dim=96, kernel_size=None):
|
339 |
+
super().__init__()
|
340 |
+
self.out_chans = out_chans
|
341 |
+
self.embed_dim = embed_dim
|
342 |
+
|
343 |
+
if kernel_size is None:
|
344 |
+
kernel_size = 1
|
345 |
+
|
346 |
+
self.proj = nn.Sequential(
|
347 |
+
nn.Conv2d(embed_dim, out_chans*patch_size**2, kernel_size=kernel_size,
|
348 |
+
padding=kernel_size//2, padding_mode='reflect'),
|
349 |
+
nn.PixelShuffle(patch_size)
|
350 |
+
)
|
351 |
+
|
352 |
+
def forward(self, x):
|
353 |
+
x = self.proj(x)
|
354 |
+
return x
|
355 |
+
|
356 |
+
|
357 |
+
class SKFusion(nn.Module):
|
358 |
+
def __init__(self, dim, height=2, reduction=8):
|
359 |
+
super(SKFusion, self).__init__()
|
360 |
+
|
361 |
+
self.height = height
|
362 |
+
d = max(int(dim/reduction), 4)
|
363 |
+
|
364 |
+
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
365 |
+
self.mlp = nn.Sequential(
|
366 |
+
nn.Conv2d(dim, d, 1, bias=False),
|
367 |
+
nn.ReLU(),
|
368 |
+
nn.Conv2d(d, dim*height, 1, bias=False)
|
369 |
+
)
|
370 |
+
|
371 |
+
self.softmax = nn.Softmax(dim=1)
|
372 |
+
|
373 |
+
def forward(self, in_feats):
|
374 |
+
B, C, H, W = in_feats[0].shape
|
375 |
+
|
376 |
+
in_feats = torch.cat(in_feats, dim=1)
|
377 |
+
in_feats = in_feats.view(B, self.height, C, H, W)
|
378 |
+
|
379 |
+
feats_sum = torch.sum(in_feats, dim=1)
|
380 |
+
attn = self.mlp(self.avg_pool(feats_sum))
|
381 |
+
attn = self.softmax(attn.view(B, self.height, C, 1, 1))
|
382 |
+
|
383 |
+
out = torch.sum(in_feats*attn, dim=1)
|
384 |
+
return out
|
385 |
+
|
386 |
+
|
387 |
+
class DehazeFormer(nn.Module):
|
388 |
+
def __init__(self, in_chans=3, out_chans=4, window_size=8,
|
389 |
+
embed_dims=[24, 48, 96, 48, 24],
|
390 |
+
mlp_ratios=[2., 4., 4., 2., 2.],
|
391 |
+
depths=[16, 16, 16, 8, 8],
|
392 |
+
num_heads=[2, 4, 6, 1, 1],
|
393 |
+
attn_ratio=[1/4, 1/2, 3/4, 0, 0],
|
394 |
+
conv_type=['DWConv', 'DWConv', 'DWConv', 'DWConv', 'DWConv'],
|
395 |
+
norm_layer=[RLN, RLN, RLN, RLN, RLN]):
|
396 |
+
super(DehazeFormer, self).__init__()
|
397 |
+
|
398 |
+
# setting
|
399 |
+
self.patch_size = 4
|
400 |
+
self.window_size = window_size
|
401 |
+
self.mlp_ratios = mlp_ratios
|
402 |
+
|
403 |
+
# split image into non-overlapping patches
|
404 |
+
self.patch_embed = PatchEmbed(
|
405 |
+
patch_size=1, in_chans=in_chans, embed_dim=embed_dims[0], kernel_size=3)
|
406 |
+
|
407 |
+
# backbone
|
408 |
+
self.layer1 = BasicLayer(network_depth=sum(depths), dim=embed_dims[0], depth=depths[0],
|
409 |
+
num_heads=num_heads[0], mlp_ratio=mlp_ratios[0],
|
410 |
+
norm_layer=norm_layer[0], window_size=window_size,
|
411 |
+
attn_ratio=attn_ratio[0], attn_loc='last', conv_type=conv_type[0])
|
412 |
+
|
413 |
+
self.patch_merge1 = PatchEmbed(
|
414 |
+
patch_size=2, in_chans=embed_dims[0], embed_dim=embed_dims[1])
|
415 |
+
|
416 |
+
self.skip1 = nn.Conv2d(embed_dims[0], embed_dims[0], 1)
|
417 |
+
|
418 |
+
self.layer2 = BasicLayer(network_depth=sum(depths), dim=embed_dims[1], depth=depths[1],
|
419 |
+
num_heads=num_heads[1], mlp_ratio=mlp_ratios[1],
|
420 |
+
norm_layer=norm_layer[1], window_size=window_size,
|
421 |
+
attn_ratio=attn_ratio[1], attn_loc='last', conv_type=conv_type[1])
|
422 |
+
|
423 |
+
self.patch_merge2 = PatchEmbed(
|
424 |
+
patch_size=2, in_chans=embed_dims[1], embed_dim=embed_dims[2])
|
425 |
+
|
426 |
+
self.skip2 = nn.Conv2d(embed_dims[1], embed_dims[1], 1)
|
427 |
+
|
428 |
+
self.layer3 = BasicLayer(network_depth=sum(depths), dim=embed_dims[2], depth=depths[2],
|
429 |
+
num_heads=num_heads[2], mlp_ratio=mlp_ratios[2],
|
430 |
+
norm_layer=norm_layer[2], window_size=window_size,
|
431 |
+
attn_ratio=attn_ratio[2], attn_loc='last', conv_type=conv_type[2])
|
432 |
+
|
433 |
+
self.patch_split1 = PatchUnEmbed(
|
434 |
+
patch_size=2, out_chans=embed_dims[3], embed_dim=embed_dims[2])
|
435 |
+
|
436 |
+
assert embed_dims[1] == embed_dims[3]
|
437 |
+
self.fusion1 = SKFusion(embed_dims[3])
|
438 |
+
|
439 |
+
self.layer4 = BasicLayer(network_depth=sum(depths), dim=embed_dims[3], depth=depths[3],
|
440 |
+
num_heads=num_heads[3], mlp_ratio=mlp_ratios[3],
|
441 |
+
norm_layer=norm_layer[3], window_size=window_size,
|
442 |
+
attn_ratio=attn_ratio[3], attn_loc='last', conv_type=conv_type[3])
|
443 |
+
|
444 |
+
self.patch_split2 = PatchUnEmbed(
|
445 |
+
patch_size=2, out_chans=embed_dims[4], embed_dim=embed_dims[3])
|
446 |
+
|
447 |
+
assert embed_dims[0] == embed_dims[4]
|
448 |
+
self.fusion2 = SKFusion(embed_dims[4])
|
449 |
+
|
450 |
+
self.layer5 = BasicLayer(network_depth=sum(depths), dim=embed_dims[4], depth=depths[4],
|
451 |
+
num_heads=num_heads[4], mlp_ratio=mlp_ratios[4],
|
452 |
+
norm_layer=norm_layer[4], window_size=window_size,
|
453 |
+
attn_ratio=attn_ratio[4], attn_loc='last', conv_type=conv_type[4])
|
454 |
+
|
455 |
+
# merge non-overlapping patches into image
|
456 |
+
self.patch_unembed = PatchUnEmbed(
|
457 |
+
patch_size=1, out_chans=out_chans, embed_dim=embed_dims[4], kernel_size=3)
|
458 |
+
|
459 |
+
|
460 |
+
def check_image_size(self, x):
|
461 |
+
# NOTE: for I2I test
|
462 |
+
_, _, h, w = x.size()
|
463 |
+
mod_pad_h = (self.patch_size - h % self.patch_size) % self.patch_size
|
464 |
+
mod_pad_w = (self.patch_size - w % self.patch_size) % self.patch_size
|
465 |
+
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect')
|
466 |
+
return x
|
467 |
+
|
468 |
+
def forward_features(self, x):
|
469 |
+
x = self.patch_embed(x)
|
470 |
+
x = self.layer1(x)
|
471 |
+
skip1 = x
|
472 |
+
|
473 |
+
x = self.patch_merge1(x)
|
474 |
+
x = self.layer2(x)
|
475 |
+
skip2 = x
|
476 |
+
|
477 |
+
x = self.patch_merge2(x)
|
478 |
+
x = self.layer3(x)
|
479 |
+
x = self.patch_split1(x)
|
480 |
+
|
481 |
+
x = self.fusion1([x, self.skip2(skip2)]) + x
|
482 |
+
x = self.layer4(x)
|
483 |
+
x = self.patch_split2(x)
|
484 |
+
|
485 |
+
x = self.fusion2([x, self.skip1(skip1)]) + x
|
486 |
+
x = self.layer5(x)
|
487 |
+
x = self.patch_unembed(x)
|
488 |
+
return x
|
489 |
+
|
490 |
+
def forward(self, x):
|
491 |
+
H, W = x.shape[2:]
|
492 |
+
x = self.check_image_size(x)
|
493 |
+
|
494 |
+
feat = self.forward_features(x)
|
495 |
+
K, B = torch.split(feat, (1, 3), dim=1)
|
496 |
+
|
497 |
+
x = K * x - B + x
|
498 |
+
x = x[:, :, :H, :W]
|
499 |
+
return x
|
500 |
+
|
501 |
+
|
502 |
+
def dehazeformer_t():
|
503 |
+
return DehazeFormer(
|
504 |
+
embed_dims=[24, 48, 96, 48, 24],
|
505 |
+
mlp_ratios=[2., 4., 4., 2., 2.],
|
506 |
+
depths=[4, 4, 4, 2, 2],
|
507 |
+
num_heads=[2, 4, 6, 1, 1],
|
508 |
+
attn_ratio=[0, 1/2, 1, 0, 0],
|
509 |
+
conv_type=['DWConv', 'DWConv', 'DWConv', 'DWConv', 'DWConv'])
|