Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import math
|
5 |
+
|
6 |
+
from torch.nn.init import _calculate_fan_in_and_fan_out
|
7 |
+
from timm.models.layers import to_2tuple, trunc_normal_
|
8 |
+
|
9 |
+
import torchvision.transforms as transforms
|
10 |
+
from torchvision import models
|
11 |
+
|
12 |
+
import gradio as gr
|
13 |
+
from PIL import Image
|
14 |
+
import numpy as np
|
15 |
+
from matplotlib import pyplot as plt
|
16 |
+
|
17 |
+
# Get cpu or gpu device for training.
|
18 |
+
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
19 |
+
print(f"Using {device} device")
|
20 |
+
t_model_load = dehazeformer_t().to(device)
|
21 |
+
t_model_load
|
22 |
+
best_model_weights = torch.load('best_t_model_weights.pth')
|
23 |
+
t_model_load.load_state_dict(best_model_weights)
|
24 |
+
|
25 |
+
def pred_one_image(inp):
|
26 |
+
one_image = np.array(inp.resize((256, 256)).convert("RGB"))/255
|
27 |
+
# convert to other format HWC -> CHW
|
28 |
+
one_image = np.moveaxis(one_image, -1, 0)
|
29 |
+
# mask = np.expand_dims(mask, 0)
|
30 |
+
one_image = torch.tensor(one_image).float()
|
31 |
+
one_image = one_image.unsqueeze(0)
|
32 |
+
one_image = one_image.to(device)
|
33 |
+
|
34 |
+
with torch.no_grad():
|
35 |
+
t_model_load.eval()
|
36 |
+
output = t_model_load(one_image)
|
37 |
+
print(output.shape)
|
38 |
+
output = output[0].cpu().permute((1, 2, 0))
|
39 |
+
plt.figure(figsize=(10, 10))
|
40 |
+
plt.imshow(output.numpy()) # convert CHW -> HWC
|
41 |
+
plt.axis("off")
|
42 |
+
# 保存图像,可以指定文件名和格式,例如 'image.png'
|
43 |
+
plt.savefig('image.png', format='png', dpi=300) # dpi是图像的分辨率
|
44 |
+
out_img = Image.open('image.png')
|
45 |
+
|
46 |
+
return out_img
|
47 |
+
|
48 |
+
demo = gr.Interface(fn=pred_one_image,
|
49 |
+
inputs=gr.Image(type="pil"),
|
50 |
+
outputs=gr.Image(type="pil"),
|
51 |
+
examples=[image_path],
|
52 |
+
)
|
53 |
+
|
54 |
+
demo.launch(debug=True)
|
55 |
+
# demo.launch()
|