azhongai666666's picture
Create app.py
6ab9bc6 verified
raw
history blame
1.72 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from torch.nn.init import _calculate_fan_in_and_fan_out
from timm.models.layers import to_2tuple, trunc_normal_
import torchvision.transforms as transforms
from torchvision import models
import gradio as gr
from PIL import Image
import numpy as np
from matplotlib import pyplot as plt
# Get cpu or gpu device for training.
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
print(f"Using {device} device")
t_model_load = dehazeformer_t().to(device)
t_model_load
best_model_weights = torch.load('best_t_model_weights.pth')
t_model_load.load_state_dict(best_model_weights)
def pred_one_image(inp):
one_image = np.array(inp.resize((256, 256)).convert("RGB"))/255
# convert to other format HWC -> CHW
one_image = np.moveaxis(one_image, -1, 0)
# mask = np.expand_dims(mask, 0)
one_image = torch.tensor(one_image).float()
one_image = one_image.unsqueeze(0)
one_image = one_image.to(device)
with torch.no_grad():
t_model_load.eval()
output = t_model_load(one_image)
print(output.shape)
output = output[0].cpu().permute((1, 2, 0))
plt.figure(figsize=(10, 10))
plt.imshow(output.numpy()) # convert CHW -> HWC
plt.axis("off")
# 保存图像,可以指定文件名和格式,例如 'image.png'
plt.savefig('image.png', format='png', dpi=300) # dpi是图像的分辨率
out_img = Image.open('image.png')
return out_img
demo = gr.Interface(fn=pred_one_image,
inputs=gr.Image(type="pil"),
outputs=gr.Image(type="pil"),
examples=[image_path],
)
demo.launch(debug=True)
# demo.launch()