reproduce / plotting /midl_summary.py
Attila Simkó
not force
c76b324
import os
import os
import sys
ROOT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.append(ROOT_DIR)
import pandas as pd
import numpy as np
from core.paper import Paper
def compare(ground_truth, automated_truth, key, verbose, url):
if key not in ground_truth.keys() or key not in automated_truth.keys():
return np.nan
if (pd.isna(ground_truth[key]) or pd.isna(automated_truth[key])):
return np.nan
if (key == "license"):
ground_truth[key] = "No" if ground_truth[key] == "No" else "Yes"
res = ground_truth[key] == automated_truth[key]
if verbose and res == False:
print(f"{key} acc. - {automated_truth[key]} (GT:{ground_truth[key]}) ({url})")
return res
max_workers = 6
compare_to_gt = True
verbose = True
training = True
paper_dump = pd.read_csv("data/results.csv", sep="\t")
papers = [Paper.from_row(row) for _, row in paper_dump.iterrows()]
eval_readme = []
eval_training = []
eval_evaluating = []
eval_licensing = []
eval_weights = []
eval_dependencies = []
full_results = []
for idx, paper in enumerate(papers):
if paper.venue != "MIDL" or paper.main_repo_url is None or (int(paper.year) >= 2024 if training else int(paper.year) < 2024):
continue
# if (verbose):
# print(f"\nEvaluating {idx} out of {len(papers)} papers...")
# print(f'Paper title - "{paper.title}" ({paper.year})')
# print(f'Repository link - {paper.main_repo_url}')
eval_dependencies.append(compare(paper.code_repro_manual, paper.code_repro_auto, "dependencies", verbose, paper.main_repo_url))
eval_training.append(compare(paper.code_repro_manual, paper.code_repro_auto, "training", verbose, paper.main_repo_url))
eval_evaluating.append(compare(paper.code_repro_manual, paper.code_repro_auto, "evaluation", verbose, paper.main_repo_url))
eval_weights.append(compare(paper.code_repro_manual, paper.code_repro_auto, "weights", verbose, paper.main_repo_url))
eval_readme.append(compare(paper.code_repro_manual, paper.code_repro_auto, "readme", verbose, paper.main_repo_url))
eval_licensing.append(compare(paper.code_repro_manual, paper.code_repro_auto, "license", verbose, paper.main_repo_url))
print("\nSummary:")
print(f"Dependencies acc. - {int(100 * np.nanmean(eval_dependencies))}%")
print(f"Training acc. - {int(100 * np.nanmean(eval_training))}%")
print(f"Evaluating acc. - {int(100 * np.nanmean(eval_evaluating))}%")
print(f"Weights acc. - {int(100 * np.nanmean(eval_weights))}%")
print(f"README acc. - {int(100 * np.nanmean(eval_readme))}%")
print(f"LICENSE acc. - {int(100 * np.nanmean(eval_licensing))}%")