Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Attila Simkó
commited on
Commit
·
c76b324
1
Parent(s):
c307e6e
not force
Browse files- core/conversion.py +3 -6
- data_generation/fetch_processed.py +1 -1
- plotting/midl_summary.py +12 -12
core/conversion.py
CHANGED
@@ -74,11 +74,8 @@ def decompose_url(url):
|
|
74 |
return None, None
|
75 |
|
76 |
def fetch_repo(repo_url, repo_name, token, force_download=False):
|
77 |
-
if (os.path.exists(repo_name)):
|
78 |
-
|
79 |
-
os.remove(repo_name)
|
80 |
-
else:
|
81 |
-
return
|
82 |
|
83 |
if ("github.com" not in repo_url):
|
84 |
return ValueError(f"URL not for github repo, please evaluate manually ({repo_url}).")
|
@@ -101,7 +98,7 @@ def fetch_repo(repo_url, repo_name, token, force_download=False):
|
|
101 |
def download_repo(paper):
|
102 |
try:
|
103 |
if (paper.main_repo_url is None):
|
104 |
-
return
|
105 |
|
106 |
fetch_repo(0, paper.main_repo_url, paper.zip_path, token)
|
107 |
except Exception as e:
|
|
|
74 |
return None, None
|
75 |
|
76 |
def fetch_repo(repo_url, repo_name, token, force_download=False):
|
77 |
+
if (os.path.exists(repo_name) & (not force_download)):
|
78 |
+
return
|
|
|
|
|
|
|
79 |
|
80 |
if ("github.com" not in repo_url):
|
81 |
return ValueError(f"URL not for github repo, please evaluate manually ({repo_url}).")
|
|
|
98 |
def download_repo(paper):
|
99 |
try:
|
100 |
if (paper.main_repo_url is None):
|
101 |
+
return paper
|
102 |
|
103 |
fetch_repo(0, paper.main_repo_url, paper.zip_path, token)
|
104 |
except Exception as e:
|
data_generation/fetch_processed.py
CHANGED
@@ -86,7 +86,7 @@ def download_xml(paper):
|
|
86 |
return paper
|
87 |
|
88 |
|
89 |
-
max_workers =
|
90 |
if __name__ == "__main__":
|
91 |
for venue in VENUE_ORDER:
|
92 |
df = pd.read_excel("https://docs.google.com/spreadsheets/d/e/2PACX-1vQjpsSYcEcYUVB-88bCQ01UfQf0z9m16ax7p1ft03G68Nr-DdXHpPt-xOFSrXFj1N49AjK5nYhmKBfo/pub?output=xlsx", sheet_name=venue)
|
|
|
86 |
return paper
|
87 |
|
88 |
|
89 |
+
max_workers = 4
|
90 |
if __name__ == "__main__":
|
91 |
for venue in VENUE_ORDER:
|
92 |
df = pd.read_excel("https://docs.google.com/spreadsheets/d/e/2PACX-1vQjpsSYcEcYUVB-88bCQ01UfQf0z9m16ax7p1ft03G68Nr-DdXHpPt-xOFSrXFj1N49AjK5nYhmKBfo/pub?output=xlsx", sheet_name=venue)
|
plotting/midl_summary.py
CHANGED
@@ -7,7 +7,7 @@ import pandas as pd
|
|
7 |
import numpy as np
|
8 |
from core.paper import Paper
|
9 |
|
10 |
-
def compare(ground_truth, automated_truth, key, verbose
|
11 |
if key not in ground_truth.keys() or key not in automated_truth.keys():
|
12 |
return np.nan
|
13 |
if (pd.isna(ground_truth[key]) or pd.isna(automated_truth[key])):
|
@@ -17,7 +17,7 @@ def compare(ground_truth, automated_truth, key, verbose=False):
|
|
17 |
ground_truth[key] = "No" if ground_truth[key] == "No" else "Yes"
|
18 |
res = ground_truth[key] == automated_truth[key]
|
19 |
if verbose and res == False:
|
20 |
-
print(f"{key} acc. - {automated_truth[key]} (GT:{ground_truth[key]})")
|
21 |
return res
|
22 |
|
23 |
max_workers = 6
|
@@ -39,16 +39,16 @@ for idx, paper in enumerate(papers):
|
|
39 |
if paper.venue != "MIDL" or paper.main_repo_url is None or (int(paper.year) >= 2024 if training else int(paper.year) < 2024):
|
40 |
continue
|
41 |
|
42 |
-
if (verbose):
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
eval_dependencies.append(compare(paper.code_repro_manual, paper.code_repro_auto, "dependencies", verbose))
|
47 |
-
eval_training.append(compare(paper.code_repro_manual, paper.code_repro_auto, "training", verbose))
|
48 |
-
eval_evaluating.append(compare(paper.code_repro_manual, paper.code_repro_auto, "evaluation", verbose))
|
49 |
-
eval_weights.append(compare(paper.code_repro_manual, paper.code_repro_auto, "weights", verbose))
|
50 |
-
eval_readme.append(compare(paper.code_repro_manual, paper.code_repro_auto, "readme", verbose))
|
51 |
-
eval_licensing.append(compare(paper.code_repro_manual, paper.code_repro_auto, "license", verbose))
|
52 |
|
53 |
print("\nSummary:")
|
54 |
print(f"Dependencies acc. - {int(100 * np.nanmean(eval_dependencies))}%")
|
|
|
7 |
import numpy as np
|
8 |
from core.paper import Paper
|
9 |
|
10 |
+
def compare(ground_truth, automated_truth, key, verbose, url):
|
11 |
if key not in ground_truth.keys() or key not in automated_truth.keys():
|
12 |
return np.nan
|
13 |
if (pd.isna(ground_truth[key]) or pd.isna(automated_truth[key])):
|
|
|
17 |
ground_truth[key] = "No" if ground_truth[key] == "No" else "Yes"
|
18 |
res = ground_truth[key] == automated_truth[key]
|
19 |
if verbose and res == False:
|
20 |
+
print(f"{key} acc. - {automated_truth[key]} (GT:{ground_truth[key]}) ({url})")
|
21 |
return res
|
22 |
|
23 |
max_workers = 6
|
|
|
39 |
if paper.venue != "MIDL" or paper.main_repo_url is None or (int(paper.year) >= 2024 if training else int(paper.year) < 2024):
|
40 |
continue
|
41 |
|
42 |
+
# if (verbose):
|
43 |
+
# print(f"\nEvaluating {idx} out of {len(papers)} papers...")
|
44 |
+
# print(f'Paper title - "{paper.title}" ({paper.year})')
|
45 |
+
# print(f'Repository link - {paper.main_repo_url}')
|
46 |
+
eval_dependencies.append(compare(paper.code_repro_manual, paper.code_repro_auto, "dependencies", verbose, paper.main_repo_url))
|
47 |
+
eval_training.append(compare(paper.code_repro_manual, paper.code_repro_auto, "training", verbose, paper.main_repo_url))
|
48 |
+
eval_evaluating.append(compare(paper.code_repro_manual, paper.code_repro_auto, "evaluation", verbose, paper.main_repo_url))
|
49 |
+
eval_weights.append(compare(paper.code_repro_manual, paper.code_repro_auto, "weights", verbose, paper.main_repo_url))
|
50 |
+
eval_readme.append(compare(paper.code_repro_manual, paper.code_repro_auto, "readme", verbose, paper.main_repo_url))
|
51 |
+
eval_licensing.append(compare(paper.code_repro_manual, paper.code_repro_auto, "license", verbose, paper.main_repo_url))
|
52 |
|
53 |
print("\nSummary:")
|
54 |
print(f"Dependencies acc. - {int(100 * np.nanmean(eval_dependencies))}%")
|