File size: 6,346 Bytes
1d21f23
 
e366aec
f1cc7f4
1d21f23
e366aec
1d21f23
 
 
f1cc7f4
 
e366aec
f1cc7f4
 
2547144
e366aec
 
f1cc7f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d21f23
2547144
1d21f23
 
e366aec
1d21f23
647c8f0
1d21f23
 
e366aec
1d21f23
 
 
 
e366aec
1d21f23
 
 
e366aec
 
2547144
e366aec
 
 
 
647c8f0
 
 
e366aec
 
 
 
 
2547144
 
 
1d21f23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e366aec
 
 
 
 
 
 
 
2547144
e366aec
 
 
 
2547144
e366aec
 
 
 
2547144
1d21f23
 
 
 
 
 
 
 
 
 
 
 
 
647c8f0
 
 
1d21f23
 
e366aec
1d21f23
 
 
647c8f0
1d21f23
 
 
 
 
 
 
e366aec
 
 
 
 
 
 
2547144
e366aec
 
 
 
2547144
1d21f23
 
647c8f0
 
1d21f23
 
647c8f0
 
 
1d21f23
 
e366aec
1d21f23
 
 
 
 
 
 
 
e366aec
647c8f0
 
 
 
 
2547144
e366aec
 
2547144
1d21f23
 
 
 
 
 
e366aec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import requests
import logging
import os
import sys
from typing import Optional, Dict, Any
from pathlib import Path

logger = logging.getLogger(__name__)

# For Hugging Face Spaces, we need better import handling
MODEL_SUPPORT = False
try:
    # First try direct import
    from app.llm.model import get_llm_instance

    MODEL_SUPPORT = True
except ImportError:
    try:
        # Then try relative import
        from ..llm.model import get_llm_instance

        MODEL_SUPPORT = True
    except ImportError:
        try:
            # Then try path-based import as a fallback
            current_dir = Path(__file__).parent
            sys.path.append(str(current_dir.parent))
            from llm.model import get_llm_instance

            MODEL_SUPPORT = True
        except ImportError:
            logger.warning(
                "Failed to import local LLM model - direct model usage disabled"
            )


class LLMClient:
    """
    Client for interacting with the LLM service or direct model access.
    Provides methods to generate text and expand creative prompts.
    Uses TinyLlama model for efficient prompt expansion.
    """

    def __init__(self, base_url: str = None):
        """
        Initialize the LLM client.

        Args:
            base_url: Base URL of the LLM service (optional)
        """
        self.base_url = base_url
        self.session = requests.Session()
        self.local_model = None
        self.spaces_mode = os.environ.get("HF_SPACES", "0") == "1"

        # For Hugging Face Spaces, we'll use the model directly instead of a service
        if self.spaces_mode or not self.base_url:
            if MODEL_SUPPORT:
                try:
                    logger.info(
                        "Running in Spaces mode, initializing TinyLlama model..."
                    )
                    self.local_model = get_llm_instance()
                    logger.info(f"Local model initialized successfully")
                except Exception as e:
                    logger.error(f"Failed to initialize local model: {str(e)}")
            else:
                logger.warning(
                    "No LLM service URL provided and direct model access disabled"
                )

    def generate(
        self,
        prompt: str,
        system_prompt: Optional[str] = None,
        max_tokens: int = 512,
        temperature: float = 0.7,
        top_p: float = 0.9,
    ) -> str:
        """
        Generate text based on a prompt.

        Args:
            prompt: The user prompt to generate from
            system_prompt: Optional system prompt to guide the generation
            max_tokens: Maximum number of tokens to generate
            temperature: Sampling temperature (higher = more creative)
            top_p: Top-p sampling parameter

        Returns:
            The generated text

        Raises:
            Exception: If the request fails
        """
        # Use local model if available (Spaces mode)
        if self.local_model:
            try:
                return self.local_model.generate(
                    prompt=prompt,
                    system_prompt=system_prompt,
                    max_tokens=max_tokens,
                    temperature=temperature,
                    top_p=top_p,
                )
            except Exception as e:
                logger.error(f"Local model generation failed: {str(e)}")
                return prompt

        # Fall back to service if base_url is provided
        if not self.base_url:
            logger.warning("No LLM service URL and no local model available")
            return prompt

        payload = {
            "prompt": prompt,
            "max_tokens": max_tokens,
            "temperature": temperature,
            "top_p": top_p,
        }

        if system_prompt:
            payload["system_prompt"] = system_prompt

        try:
            response = self.session.post(f"{self.base_url}/generate", json=payload)
            response.raise_for_status()
            return response.json()[
                "result"
            ]  # Updated to match service.py response format
        except requests.RequestException as e:
            logger.error(f"Failed to generate text: {str(e)}")
            return prompt

    def expand_prompt(self, prompt: str) -> str:
        """
        Expand a creative prompt with rich details using TinyLlama.

        Args:
            prompt: The user's original prompt

        Returns:
            An expanded, detailed creative prompt
        """
        # Use local model if available (Spaces mode)
        if self.local_model:
            try:
                return self.local_model.expand_creative_prompt(prompt)
            except Exception as e:
                logger.error(f"Local model prompt expansion failed: {str(e)}")
                return prompt

        # Fall back to service if base_url is provided
        if not self.base_url:
            logger.warning("No LLM service URL and no local model available")
            return prompt

        try:
            response = self.session.post(
                f"{self.base_url}/expand-prompt",
                json={"prompt": prompt},  # Updated endpoint to match service.py
            )
            response.raise_for_status()
            return response.json()[
                "expanded_prompt"
            ]  # Updated to match service.py response format
        except requests.RequestException as e:
            logger.error(f"Failed to expand prompt: {str(e)}")
            return prompt

    def health_check(self) -> Dict[str, Any]:
        """
        Check if the LLM service is healthy.

        Returns:
            Health status information
        """
        if self.local_model:
            return {
                "status": "healthy",
                "mode": "direct_model",
                "model": "TinyLlama-1.1B-Chat-v1.0",
            }

        if not self.base_url:
            return {"status": "unavailable", "reason": "no_service_url"}

        try:
            response = self.session.get(f"{self.base_url}/health")
            response.raise_for_status()
            return response.json()
        except requests.RequestException as e:
            logger.error(f"Health check failed: {str(e)}")
            return {"status": "unhealthy", "reason": str(e)}