Zoro-chi commited on
Commit
1d21f23
·
1 Parent(s): 2ec20fe

Initial commit

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .DS_Store +0 -0
  2. .env.example +9 -0
  3. .env.spaces +18 -0
  4. .gitattributes +8 -6
  5. .gitignore +57 -0
  6. README.md +35 -13
  7. app.py +36 -0
  8. app/.DS_Store +0 -0
  9. app/config/execution.json +34 -0
  10. app/config/manifest.json +11 -0
  11. app/config/properties.json +6 -0
  12. app/config/state.json +8 -0
  13. app/core/.DS_Store +0 -0
  14. app/core/__init__.py +0 -0
  15. app/core/image_to_3d.py +522 -0
  16. app/core/pipeline.py +344 -0
  17. app/core/remote.py +106 -0
  18. app/core/stub.py +137 -0
  19. app/core/text_to_image.py +259 -0
  20. app/data/.DS_Store +0 -0
  21. app/llm/.DS_Store +0 -0
  22. app/llm/__init__.py +0 -0
  23. app/llm/client.py +105 -0
  24. app/llm/model.py +237 -0
  25. app/llm/service.py +213 -0
  26. app/main.py +113 -0
  27. app/ontology_dc8f06af066e4a7880a5938933236037/__init__.py +0 -0
  28. app/ontology_dc8f06af066e4a7880a5938933236037/config.py +25 -0
  29. app/ontology_dc8f06af066e4a7880a5938933236037/input.py +28 -0
  30. app/ontology_dc8f06af066e4a7880a5938933236037/output.py +25 -0
  31. app/tools/__init__.py +0 -0
  32. app/tools/blob_viewer.py +216 -0
  33. app/ui/app.py +407 -0
  34. onto/.DS_Store +0 -0
  35. onto/dc8f06af066e4a7880a5938933236037/.DS_Store +0 -0
  36. onto/dc8f06af066e4a7880a5938933236037/connection/ConfigClass.json +10 -0
  37. onto/dc8f06af066e4a7880a5938933236037/connection/InputClass.json +10 -0
  38. onto/dc8f06af066e4a7880a5938933236037/connection/OutputClass.json +10 -0
  39. onto/dc8f06af066e4a7880a5938933236037/defaults/ConfigClass.json +15 -0
  40. onto/dc8f06af066e4a7880a5938933236037/defaults/InputClass.json +15 -0
  41. onto/dc8f06af066e4a7880a5938933236037/defaults/OutputClass.json +15 -0
  42. onto/dc8f06af066e4a7880a5938933236037/encoding/ConfigClass.json +10 -0
  43. onto/dc8f06af066e4a7880a5938933236037/encoding/InputClass.json +10 -0
  44. onto/dc8f06af066e4a7880a5938933236037/encoding/OutputClass.json +10 -0
  45. onto/dc8f06af066e4a7880a5938933236037/instruction/ConfigClass.json +14 -0
  46. onto/dc8f06af066e4a7880a5938933236037/instruction/InputClass.json +14 -0
  47. onto/dc8f06af066e4a7880a5938933236037/instruction/OutputClass.json +14 -0
  48. onto/dc8f06af066e4a7880a5938933236037/meta.json +42 -0
  49. onto/dc8f06af066e4a7880a5938933236037/naming/ConfigClass.json +12 -0
  50. onto/dc8f06af066e4a7880a5938933236037/naming/InputClass.json +12 -0
.DS_Store ADDED
Binary file (8.2 kB). View file
 
.env.example ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ # Hugging Face token for downloading models
2
+ HF_TOKEN=your_huggingface_token_here
3
+
4
+ # Model configuration
5
+ MODEL_ID=meta-llama/Llama-3.2-3B-Instruct
6
+
7
+ # Application IDs
8
+ TEXT_TO_IMAGE_APP_ID=c25dcd829d134ea98f5ae4dd311d13bc.node3.openfabric.network
9
+ IMAGE_TO_3D_APP_ID=f0b5f319156c4819b9827000b17e511a.node3.openfabric.network
.env.spaces ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Environment variables for Hugging Face Spaces deployment
2
+ HTTPX_VERIFY=0
3
+ UI_PORT=7860
4
+ HF_SPACES=1
5
+
6
+ # Openfabric App IDs
7
+ TEXT_TO_IMAGE_APP_ID=c25dcd829d134ea98f5ae4dd311d13bc.node3.openfabric.network
8
+ IMAGE_TO_3D_APP_ID=f0b5f319156c4819b9827000b17e511a.node3.openfabric.network
9
+
10
+ # LLM Configuration for Spaces - use a hosted model instead of local files
11
+ MODEL_ID=meta-llama/Llama-3.2-3B-Instruct
12
+
13
+ # Data Directories (Spaces-friendly paths)
14
+ IMAGE_OUTPUT_DIR=/tmp/data/images
15
+ MODEL_OUTPUT_DIR=/tmp/data/models
16
+
17
+ # Log level
18
+ LOG_LEVEL=INFO
.gitattributes CHANGED
@@ -1,6 +1,13 @@
 
 
 
 
 
 
 
 
1
  *.7z filter=lfs diff=lfs merge=lfs -text
2
  *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
  *.bz2 filter=lfs diff=lfs merge=lfs -text
5
  *.ckpt filter=lfs diff=lfs merge=lfs -text
6
  *.ftz filter=lfs diff=lfs merge=lfs -text
@@ -13,16 +20,13 @@
13
  *.msgpack filter=lfs diff=lfs merge=lfs -text
14
  *.npy filter=lfs diff=lfs merge=lfs -text
15
  *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
  *.ot filter=lfs diff=lfs merge=lfs -text
18
  *.parquet filter=lfs diff=lfs merge=lfs -text
19
  *.pb filter=lfs diff=lfs merge=lfs -text
20
  *.pickle filter=lfs diff=lfs merge=lfs -text
21
  *.pkl filter=lfs diff=lfs merge=lfs -text
22
  *.pt filter=lfs diff=lfs merge=lfs -text
23
- *.pth filter=lfs diff=lfs merge=lfs -text
24
  *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
28
  *.tar filter=lfs diff=lfs merge=lfs -text
@@ -34,5 +38,3 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  *.png filter=lfs diff=lfs merge=lfs -text
37
- *.glb filter=lfs diff=lfs merge=lfs -text
38
- *.gltf filter=lfs diff=lfs merge=lfs -text
 
1
+ *.glb filter=lfs diff=lfs merge=lfs -text
2
+ *.gltf filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
5
+ *.gguf filter=lfs diff=lfs merge=lfs -text
6
+ *.onnx filter=lfs diff=lfs merge=lfs -text
7
+ *.pth filter=lfs diff=lfs merge=lfs -text
8
+ app/llm/models/** filter=lfs diff=lfs merge=lfs -text
9
  *.7z filter=lfs diff=lfs merge=lfs -text
10
  *.arrow filter=lfs diff=lfs merge=lfs -text
 
11
  *.bz2 filter=lfs diff=lfs merge=lfs -text
12
  *.ckpt filter=lfs diff=lfs merge=lfs -text
13
  *.ftz filter=lfs diff=lfs merge=lfs -text
 
20
  *.msgpack filter=lfs diff=lfs merge=lfs -text
21
  *.npy filter=lfs diff=lfs merge=lfs -text
22
  *.npz filter=lfs diff=lfs merge=lfs -text
 
23
  *.ot filter=lfs diff=lfs merge=lfs -text
24
  *.parquet filter=lfs diff=lfs merge=lfs -text
25
  *.pb filter=lfs diff=lfs merge=lfs -text
26
  *.pickle filter=lfs diff=lfs merge=lfs -text
27
  *.pkl filter=lfs diff=lfs merge=lfs -text
28
  *.pt filter=lfs diff=lfs merge=lfs -text
 
29
  *.rar filter=lfs diff=lfs merge=lfs -text
 
30
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
31
  *.tar.* filter=lfs diff=lfs merge=lfs -text
32
  *.tar filter=lfs diff=lfs merge=lfs -text
 
38
  *.zst filter=lfs diff=lfs merge=lfs -text
39
  *tfevents* filter=lfs diff=lfs merge=lfs -text
40
  *.png filter=lfs diff=lfs merge=lfs -text
 
 
.gitignore ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # Data directories with large files
3
+ app/data/images/*.png
4
+ app/data/images/*.jpg
5
+ app/data/images/*.json
6
+ app/data/models/*.glb
7
+ app/data/models/*.gltf
8
+ app/data/models/*.json
9
+ app/data/downloads/*
10
+
11
+ # Exclude LLM models directory (contains large 12.8GB model)
12
+ app/llm/models/**
13
+
14
+ # Keep directory structure
15
+ !app/data/images/.gitkeep
16
+ !app/data/models/.gitkeep
17
+ !app/data/downloads/.gitkeep
18
+ !app/llm/models/.gitkeep
19
+
20
+ # Python artifacts
21
+ __pycache__/
22
+ *.py[cod]
23
+ *$py.class
24
+ *.so
25
+ .Python
26
+ build/
27
+ develop-eggs/
28
+ dist/
29
+ downloads/
30
+ eggs/
31
+ .eggs/
32
+ lib/
33
+ lib64/
34
+ parts/
35
+ sdist/
36
+ var/
37
+ wheels/
38
+ *.egg-info/
39
+ .installed.cfg
40
+ *.egg
41
+
42
+ # Environments
43
+ .env
44
+ .venv
45
+ env/
46
+ venv/
47
+ ENV/
48
+
49
+ # VS Code settings
50
+ .vscode/
51
+
52
+ # Jupyter Notebook
53
+ .ipynb_checkpoints
54
+
55
+ # Logs
56
+ *.log
57
+ *.out
README.md CHANGED
@@ -1,13 +1,35 @@
1
- ---
2
- title: Ai Creative Studio
3
- emoji: 🔥
4
- colorFrom: red
5
- colorTo: pink
6
- sdk: gradio
7
- sdk_version: 5.25.2
8
- app_file: app.py
9
- pinned: false
10
- short_description: A Text - Image - 3D Model generation application
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # AI Creative Studio
2
+
3
+ An AI-powered creative application that combines text-to-image and image-to-3D model generation.
4
+
5
+ ## Features
6
+
7
+ - Text-to-Image generation using Openfabric AI services
8
+ - Image-to-3D model conversion
9
+ - Interactive UI built with Gradio 4.44
10
+ - Support for local LLM integration for prompt enhancement
11
+
12
+ ## Setup and Usage
13
+
14
+ ### Local Development
15
+
16
+ 1. Clone this repository
17
+ 2. Copy `.env.example` to `.env` and configure your environment variables
18
+ 3. Install dependencies: `pip install -r requirements.txt`
19
+ 4. Run the UI: `python app/ui/app.py`
20
+
21
+ ### Hugging Face Spaces Deployment
22
+
23
+ This project is configured to run on Hugging Face Spaces. The main entry point for Spaces is the root `app.py` file.
24
+
25
+ ## Environment Variables
26
+
27
+ Key environment variables:
28
+
29
+ - `TEXT_TO_IMAGE_APP_ID`: Openfabric service ID for text-to-image generation
30
+ - `IMAGE_TO_3D_APP_ID`: Openfabric service ID for image-to-3D conversion
31
+ - `HF_TOKEN`: Hugging Face token for accessing models (optional in Spaces if using public models)
32
+
33
+ ## License
34
+
35
+ This project is licensed under the MIT License.
app.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ """
3
+ AI Creative Studio - Hugging Face Spaces Entry Point
4
+ """
5
+
6
+ import os
7
+ import sys
8
+ import logging
9
+ from pathlib import Path
10
+
11
+ # Configure logging
12
+ logging.basicConfig(
13
+ level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
14
+ )
15
+ logger = logging.getLogger("huggingface-spaces")
16
+
17
+ # Make sure app directory is in the path
18
+ app_dir = Path(__file__).parent / "app"
19
+ sys.path.append(str(app_dir))
20
+
21
+ # Set environment variables for Spaces
22
+ os.environ["HTTPX_VERIFY"] = "0"
23
+ os.environ["UI_PORT"] = "7860" # Standard Spaces port
24
+ os.environ["HF_SPACES"] = "1" # Flag to indicate we're running in Spaces
25
+
26
+ # Import UI module
27
+ try:
28
+ from app.ui.app import main as ui_main
29
+ logger.info("Successfully imported UI module")
30
+ except ImportError as e:
31
+ logger.error(f"Failed to import UI module: {str(e)}")
32
+ raise
33
+
34
+ if __name__ == "__main__":
35
+ logger.info("Starting AI Creative Studio on Hugging Face Spaces")
36
+ ui_main()
app/.DS_Store ADDED
Binary file (8.2 kB). View file
 
app/config/execution.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "input_class" : {
3
+ "package" : "ontology_dc8f06af066e4a7880a5938933236037.input",
4
+ "class" : "InputClass"
5
+ },
6
+ "input_schema" : {
7
+ "package" : "ontology_dc8f06af066e4a7880a5938933236037.input",
8
+ "class" : "InputClassSchema"
9
+ },
10
+ "output_class" : {
11
+ "package" : "ontology_dc8f06af066e4a7880a5938933236037.output",
12
+ "class" : "OutputClass"
13
+ },
14
+ "output_schema" : {
15
+ "package" : "ontology_dc8f06af066e4a7880a5938933236037.output",
16
+ "class" : "OutputClassSchema"
17
+ },
18
+ "config_class" : {
19
+ "package" : "ontology_dc8f06af066e4a7880a5938933236037.config",
20
+ "class" : "ConfigClass"
21
+ },
22
+ "config_schema" : {
23
+ "package" : "ontology_dc8f06af066e4a7880a5938933236037.config",
24
+ "class" : "ConfigClassSchema"
25
+ },
26
+ "main_callback" : {
27
+ "package" : "main",
28
+ "function" : "execute"
29
+ },
30
+ "config_callback" : {
31
+ "package" : "main",
32
+ "function" : "config"
33
+ }
34
+ }
app/config/manifest.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "ai-test",
3
+ "version": "1.0",
4
+ "description": "An application for demonstrating your skills in AI",
5
+ "organization": "",
6
+ "sdk": "0.2.9",
7
+ "overview": "",
8
+ "input": "dc8f06af066e4a7880a5938933236037/b6acb533a2128948785b689c87119355/1.0",
9
+ "output": "dc8f06af066e4a7880a5938933236037/154ac0a492d67f103915099d81a49f03/1.0",
10
+ "config": "dc8f06af066e4a7880a5938933236037/b0fe7844500e8e21c39605e13d5e64e4/1.0"
11
+ }
app/config/properties.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "key": "key",
4
+ "value": "value"
5
+ }
6
+ ]
app/config/state.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "super-user": {
3
+ "app_ids": [
4
+ "c25dcd829d134ea98f5ae4dd311d13bc.node3.openfabric.network",
5
+ "f0b5f319156c4819b9827000b17e511a.node3.openfabric.network"
6
+ ]
7
+ }
8
+ }
app/core/.DS_Store ADDED
Binary file (6.15 kB). View file
 
app/core/__init__.py ADDED
File without changes
app/core/image_to_3d.py ADDED
@@ -0,0 +1,522 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import logging
3
+ import base64
4
+ from typing import Dict, Optional, Any, Tuple
5
+ import json
6
+ from pathlib import Path
7
+ import time
8
+ import uuid
9
+ import random
10
+ import requests
11
+ from dotenv import load_dotenv
12
+
13
+ from .stub import Stub
14
+
15
+ load_dotenv()
16
+
17
+
18
+ logger = logging.getLogger(__name__)
19
+
20
+
21
+ class ImageTo3DGenerator:
22
+ """
23
+ Handles the image-to-3D generation using Openfabric's API.
24
+ """
25
+
26
+ def __init__(self, stub: Stub, app_id: str = None):
27
+ """
28
+ Initialize the image-to-3D generator.
29
+
30
+ Args:
31
+ stub: Stub instance for communicating with Openfabric
32
+ app_id: The app ID for the image-to-3D service (default: from env var)
33
+ """
34
+ self.stub = stub
35
+ self.app_id = app_id or os.environ.get("IMAGE_TO_3D_APP_ID")
36
+
37
+ # Maximum time to wait for job completion (in seconds)
38
+ self.max_wait_time = 300 # 5 minutes
39
+
40
+ # Polling interval for checking job status (in seconds)
41
+ self.polling_interval = 5 # Check every 5 seconds
42
+
43
+ # Use default output directory if MODEL_OUTPUT_DIR is not set
44
+ model_output_dir = os.environ.get("MODEL_OUTPUT_DIR")
45
+ if model_output_dir is None:
46
+ # Default to app/data/models
47
+ self.output_dir = Path(__file__).parent.parent / "data" / "models"
48
+ logger.warning(
49
+ f"MODEL_OUTPUT_DIR not set, using default: {self.output_dir}"
50
+ )
51
+ else:
52
+ self.output_dir = Path(model_output_dir)
53
+
54
+ self.output_dir.mkdir(parents=True, exist_ok=True)
55
+
56
+ # Cache the schema and manifest - don't raise exceptions to allow fallback mode
57
+ try:
58
+ self.input_schema = self.stub.schema(self.app_id, "input")
59
+ self.output_schema = self.stub.schema(self.app_id, "output")
60
+ self.manifest = self.stub.manifest(self.app_id)
61
+ logger.info(
62
+ f"Successfully loaded schema and manifest for image-to-3D app: {self.app_id}"
63
+ )
64
+ except Exception as e:
65
+ logger.warning(f"Failed to load schema/manifest for image-to-3D app: {e}")
66
+
67
+ def generate(
68
+ self, image_path: str, params: Optional[Dict[str, Any]] = None
69
+ ) -> Tuple[str, str]:
70
+ """
71
+ Generate a 3D model from an image.
72
+
73
+ Args:
74
+ image_path: Path to the source image file
75
+ params: Additional parameters for 3D generation
76
+
77
+ Returns:
78
+ Tuple of (model_path, metadata_path)
79
+ """
80
+ # Read the image and convert to base64
81
+ try:
82
+ with open(image_path, "rb") as img_file:
83
+ image_data = base64.b64encode(img_file.read()).decode("utf-8")
84
+ except Exception as e:
85
+ logger.error(f"Failed to read image at {image_path}: {e}")
86
+ raise
87
+
88
+ # Prepare the request based on the input schema
89
+ request_data = self._prepare_request(image_data, params)
90
+
91
+ # Log the request
92
+ logger.info(f"Sending image-to-3D request for image: {image_path}")
93
+
94
+ # Send the request to Openfabric
95
+ rid = None
96
+ try:
97
+ start_time = time.time()
98
+
99
+ # Make the API call - this will return immediately with a request ID
100
+ response = self.stub.call(self.app_id, request_data)
101
+
102
+ # Extract the request ID from logs
103
+ rid = self._extract_rid_from_logs()
104
+ if not rid:
105
+ raise ValueError("Failed to extract request ID from logs")
106
+
107
+ logger.info(f"Submitted image-to-3D job with request ID: {rid}")
108
+
109
+ # Poll for job completion
110
+ qid, result = self._poll_for_completion(rid)
111
+
112
+ generation_time = time.time() - start_time
113
+ logger.info(f"Image-to-3D generation completed in {generation_time:.2f}s")
114
+
115
+ if not result:
116
+ raise ValueError("Failed to get result data after job completion")
117
+
118
+ # Process and save the result
119
+ return self._process_result(result, image_path)
120
+
121
+ except Exception as e:
122
+ logger.error(f"Failed to generate 3D model: {e}")
123
+ raise
124
+
125
+ def _extract_rid_from_logs(self) -> str:
126
+ """
127
+ Extract the request ID (rid) from logs.
128
+ The stub logs the rid when it creates a request in the format "Created rid{rid}"
129
+
130
+ Returns:
131
+ Request ID string or None if not found
132
+ """
133
+ import re
134
+
135
+ # Try to scan the last few log lines for the request ID pattern
136
+ log_handler = next(
137
+ (
138
+ h
139
+ for h in logging.getLogger("root").handlers
140
+ if isinstance(h, logging.StreamHandler)
141
+ ),
142
+ None,
143
+ )
144
+
145
+ if hasattr(log_handler, "stream") and hasattr(log_handler.stream, "getvalue"):
146
+ # This is for StringIO in testing environments
147
+ log_content = log_handler.stream.getvalue()
148
+ matches = re.findall(r"Created rid([a-f0-9]+)", log_content)
149
+ if matches:
150
+ return matches[-1] # Return the most recent match
151
+
152
+ # Alternative approach: look for the most recently created request
153
+ try:
154
+ queue_url = f"https://{self.app_id}/queue/list"
155
+ response = requests.get(queue_url)
156
+ if response.status_code == 200:
157
+ job_list = response.json()
158
+ if job_list and isinstance(job_list, list) and len(job_list) > 0:
159
+ # Sort by creation time (newest first) and get the first one
160
+ sorted_jobs = sorted(
161
+ job_list, key=lambda x: x.get("created_at", ""), reverse=True
162
+ )
163
+ return sorted_jobs[0].get("rid")
164
+ except Exception as e:
165
+ logger.warning(f"Failed to get request ID from queue: {e}")
166
+
167
+ return None
168
+
169
+ def _poll_for_completion(self, rid: str) -> Tuple[str, Dict[str, Any]]:
170
+ """
171
+ Poll the queue list endpoint until the job is complete.
172
+
173
+ Args:
174
+ rid: Request ID to check
175
+
176
+ Returns:
177
+ Tuple of (queue_id, result_data)
178
+ """
179
+ start_time = time.time()
180
+ qid = None
181
+ result = None
182
+
183
+ logger.info(f"Waiting for job completion (rid: {rid})...")
184
+
185
+ while (time.time() - start_time) < self.max_wait_time:
186
+ try:
187
+ # Get the queue list
188
+ queue_url = f"https://{self.app_id}/queue/list"
189
+ response = requests.get(queue_url)
190
+
191
+ if response.status_code != 200:
192
+ logger.error(f"Failed to get queue list: {response.status_code}")
193
+ time.sleep(self.polling_interval)
194
+ continue
195
+
196
+ # Parse the response and find our job
197
+ job_list = response.json()
198
+ if not isinstance(job_list, list):
199
+ logger.error(f"Unexpected queue list format: {type(job_list)}")
200
+ time.sleep(self.polling_interval)
201
+ continue
202
+
203
+ # Find our job by request ID
204
+ our_job = next((job for job in job_list if job.get("rid") == rid), None)
205
+
206
+ if not our_job:
207
+ logger.warning(f"Job with rid {rid} not found in queue")
208
+ time.sleep(self.polling_interval)
209
+ continue
210
+
211
+ # Get queue ID if we don't have it yet
212
+ if not qid:
213
+ qid = our_job.get("qid")
214
+ logger.info(f"Found job with qid: {qid}")
215
+
216
+ # Check if job is finished
217
+ if our_job.get("finished") and our_job.get("status") == "COMPLETED":
218
+ logger.info(f"Job completed successfully")
219
+
220
+ # Get the detailed result
221
+ result_url = f"https://{self.app_id}/queue/get?qid={qid}"
222
+ result_response = requests.get(result_url)
223
+
224
+ if result_response.status_code == 200:
225
+ result = result_response.json()
226
+ logger.info(f"Got result data: {result}")
227
+ return qid, result
228
+ else:
229
+ logger.error(
230
+ f"Failed to get result data: {result_response.status_code}"
231
+ )
232
+
233
+ elif our_job.get("finished") and our_job.get("status") != "COMPLETED":
234
+ # Job failed
235
+ status = our_job.get("status")
236
+ messages = our_job.get("messages", [])
237
+ error_msgs = [
238
+ m.get("content") for m in messages if m.get("type") == "ERROR"
239
+ ]
240
+
241
+ error_msg = f"Job failed with status: {status}"
242
+ if error_msgs:
243
+ error_msg += f", errors: {'; '.join(error_msgs)}"
244
+
245
+ logger.error(error_msg)
246
+ raise ValueError(error_msg)
247
+
248
+ # Job is still running
249
+ status = our_job.get("status")
250
+ progress = (
251
+ our_job.get("bars", {}).get("default", {}).get("percent", "0")
252
+ )
253
+ logger.info(f"Job status: {status}, progress: {progress}%")
254
+
255
+ except Exception as e:
256
+ logger.error(f"Error polling for job completion: {e}")
257
+
258
+ # Wait before checking again
259
+ time.sleep(self.polling_interval)
260
+
261
+ # If we get here, we timed out
262
+ raise TimeoutError(
263
+ f"Timed out waiting for job completion after {self.max_wait_time} seconds"
264
+ )
265
+
266
+ def _prepare_request(
267
+ self, image_data: str, params: Optional[Dict[str, Any]] = None
268
+ ) -> Dict[str, Any]:
269
+ """
270
+ Prepare the request payload based on the app's input schema.
271
+
272
+ Args:
273
+ image_data: Base64-encoded image data
274
+ params: Additional parameters for 3D generation
275
+
276
+ Returns:
277
+ Dict containing the properly formatted request payload
278
+ """
279
+ # Default parameters for image-to-3D transformation
280
+ default_params = {
281
+ "model_type": "textured", # Options might include: textured, mesh, point_cloud
282
+ "quality": "standard", # Options might include: draft, standard, high
283
+ "format": "glb", # Output format: glb, obj, etc.
284
+ }
285
+
286
+ # Override defaults with provided params
287
+ request_params = {**default_params, **(params or {})}
288
+
289
+ # Create request based on the actual input schema
290
+ # The schema specifies 'input_image' as the required field, not 'image'
291
+ request = {"input_image": image_data, **request_params}
292
+
293
+ return request
294
+
295
+ def _process_result(
296
+ self, result: Dict[str, Any], image_path: str
297
+ ) -> Tuple[str, str]:
298
+ """
299
+ Process the result from the image-to-3D app.
300
+
301
+ Args:
302
+ result: The API response
303
+ image_path: Path to the source image
304
+
305
+ Returns:
306
+ Tuple of (model_path, metadata_path)
307
+ """
308
+ # If result is None, raise an error - don't use mock data
309
+ if result is None:
310
+ raise ValueError("No result received from image-to-3D generation service")
311
+
312
+ try:
313
+ model_format = "glb" # Default format for 3D models
314
+ has_video_preview = False
315
+ video_data = None
316
+ model_base64 = None
317
+
318
+ # Process Openfabric blob response format (most common case)
319
+ # This will have 'generated_object' as a data_blob ID (without the base64 data)
320
+ if "generated_object" in result:
321
+ # Extract the model data or model blob reference
322
+ model_data = result.get("generated_object")
323
+
324
+ # Check if this is a blob reference (data URI format or plain string)
325
+ if isinstance(model_data, str):
326
+ if "/" in model_data or model_data.startswith("data_"):
327
+ # This is a blob ID reference
328
+ blob_id = model_data
329
+ logger.info(f"3D model generation result ID: {blob_id}")
330
+
331
+ # Prepare the blob URL and try to download the actual model data
332
+ try:
333
+ # Construct URL for the blob
334
+ resource_url = (
335
+ f"https://{self.app_id}/resource?reid={blob_id}"
336
+ )
337
+ logger.info(
338
+ f"Fetching 3D model from blob URL: {resource_url}"
339
+ )
340
+
341
+ response = requests.get(resource_url)
342
+
343
+ if response.status_code == 200:
344
+ # We have the actual model data
345
+ model_binary = response.content
346
+ model_base64 = base64.b64encode(model_binary).decode(
347
+ "utf-8"
348
+ )
349
+ logger.info(
350
+ f"Successfully fetched 3D model from blob store"
351
+ )
352
+
353
+ # Set format based on content-type if available
354
+ content_type = response.headers.get("Content-Type", "")
355
+ if "gltf-binary" in content_type:
356
+ model_format = "glb"
357
+ elif (
358
+ "gltf+json" in content_type
359
+ or "json" in content_type
360
+ ):
361
+ model_format = "gltf"
362
+ else:
363
+ logger.error(
364
+ f"Failed to fetch blob: {response.status_code} - {response.text}"
365
+ )
366
+ raise ValueError(
367
+ f"Failed to fetch blob data: {response.status_code}"
368
+ )
369
+ except Exception as blob_error:
370
+ logger.error(f"Error accessing blob store: {blob_error}")
371
+ raise ValueError(
372
+ f"Failed to fetch 3D model from blob store: {blob_error}"
373
+ )
374
+ elif "," in model_data and "base64" in model_data:
375
+ # Extract base64 data if in data URI format
376
+ model_base64 = model_data.split(",", 1)[1]
377
+ else:
378
+ # Use as-is for plain base64 data
379
+ model_base64 = model_data
380
+ else:
381
+ # If model_data is not a string, this is an unexpected format
382
+ raise ValueError(
383
+ f"Unexpected generated_object type: {type(model_data)}"
384
+ )
385
+
386
+ # Also handle video preview if available
387
+ video_data = result.get("video_object")
388
+ has_video_preview = video_data is not None and video_data != ""
389
+
390
+ # Handle result blob reference format (alternative format)
391
+ elif "result" in result:
392
+ blob_id = result.get("result")
393
+ logger.info(f"3D model generation result ID: {blob_id}")
394
+
395
+ # Try to fetch the actual model data from the blob store
396
+ try:
397
+ # Construct URL for the blob
398
+ resource_url = f"https://{self.app_id}/resource?reid={blob_id}"
399
+ logger.info(f"Fetching 3D model from blob URL: {resource_url}")
400
+
401
+ response = requests.get(resource_url)
402
+
403
+ if response.status_code == 200:
404
+ # We have the actual model data
405
+ model_binary = response.content
406
+ model_base64 = base64.b64encode(model_binary).decode("utf-8")
407
+ logger.info(f"Successfully fetched 3D model from blob store")
408
+
409
+ # Set format based on content-type if available
410
+ content_type = response.headers.get("Content-Type", "")
411
+ if "gltf-binary" in content_type:
412
+ model_format = "glb"
413
+ elif "gltf+json" in content_type or "json" in content_type:
414
+ model_format = "gltf"
415
+ else:
416
+ logger.error(
417
+ f"Failed to fetch blob: {response.status_code} - {response.text}"
418
+ )
419
+ raise ValueError(
420
+ f"Failed to fetch blob data: {response.status_code}"
421
+ )
422
+ except Exception as blob_error:
423
+ logger.error(f"Error accessing blob store: {blob_error}")
424
+ raise ValueError(
425
+ f"Failed to fetch 3D model from blob store: {blob_error}"
426
+ )
427
+
428
+ # Handle direct model data format (which has 'model' field)
429
+ elif "model" in result:
430
+ model_data = result.get("model")
431
+ model_format = result.get("format", "glb")
432
+
433
+ if isinstance(model_data, str):
434
+ if "," in model_data:
435
+ # Extract base64 data if in data URI format
436
+ model_base64 = model_data.split(",", 1)[1]
437
+ else:
438
+ model_base64 = model_data
439
+ else:
440
+ # Use as-is for binary data
441
+ model_base64 = model_data
442
+ has_video_preview = False
443
+ else:
444
+ raise KeyError(
445
+ f"Could not identify response format. Keys: {list(result.keys())}"
446
+ )
447
+
448
+ if not model_base64:
449
+ raise ValueError("No model data found in the result")
450
+
451
+ # Generate a unique ID for this model and timestamp
452
+ model_id = str(uuid.uuid4())
453
+ timestamp = int(time.time())
454
+
455
+ # NEW: Extract the base filename from the source image to use for the model
456
+ source_image_filename = Path(image_path).name
457
+ base_name = source_image_filename.rsplit(".", 1)[0] # Remove extension
458
+
459
+ # If base name doesn't already include timestamp, add it
460
+ if not any(c.isdigit() for c in base_name):
461
+ base_name = f"{base_name}_{timestamp}"
462
+
463
+ # Append "_3d" to clearly indicate this is a 3D model derived from the image
464
+ base_name = f"{base_name}_3d"
465
+
466
+ # Create filenames based on the image name pattern
467
+ model_filename = f"{base_name}.{model_format}"
468
+ metadata_filename = f"{base_name}.json"
469
+
470
+ # Create paths for model and metadata
471
+ model_path = self.output_dir / model_filename
472
+ metadata_path = self.output_dir / metadata_filename
473
+
474
+ # Create path for video preview if available
475
+ video_path = None
476
+ if has_video_preview and video_data:
477
+ video_filename = f"{base_name}_preview.mp4"
478
+ video_path = self.output_dir / video_filename
479
+ try:
480
+ # Extract video base64 data
481
+ video_base64 = video_data
482
+ if isinstance(video_data, str) and "," in video_data:
483
+ video_base64 = video_data.split(",", 1)[1]
484
+
485
+ # Save the video preview
486
+ with open(video_path, "wb") as video_file:
487
+ video_file.write(base64.b64decode(video_base64))
488
+ logger.info(f"Video preview saved to {video_path}")
489
+ except Exception as video_error:
490
+ logger.error(f"Failed to save video preview: {video_error}")
491
+ video_path = None
492
+
493
+ # Save the model file
494
+ with open(model_path, "wb") as model_file:
495
+ model_file.write(base64.b64decode(model_base64))
496
+
497
+ # Save metadata linking image to 3D model
498
+ metadata = {
499
+ "id": model_id,
500
+ "timestamp": timestamp,
501
+ "source_image": image_path,
502
+ "source_image_filename": source_image_filename,
503
+ "file_path": str(model_path),
504
+ "format": model_format,
505
+ "type": "3d_model",
506
+ "has_video_preview": has_video_preview,
507
+ "video_path": str(video_path) if video_path else None,
508
+ "result_id": result.get("result", result.get("generated_object", "")),
509
+ "parameters": result.get("parameters", {}),
510
+ }
511
+
512
+ with open(metadata_path, "w") as meta_file:
513
+ json.dump(metadata, meta_file)
514
+
515
+ logger.info(f"3D model saved to {model_path}")
516
+ logger.info(f"Metadata saved to {metadata_path}")
517
+
518
+ return str(model_path), str(metadata_path)
519
+
520
+ except Exception as e:
521
+ logger.error(f"Failed to process 3D model result: {e}")
522
+ raise
app/core/pipeline.py ADDED
@@ -0,0 +1,344 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import os
3
+ import sys
4
+ import json
5
+ import requests
6
+ from typing import Dict, Any, Optional, Tuple
7
+ from pathlib import Path
8
+ import importlib
9
+ import importlib.util
10
+
11
+ # Use relative imports for modules in the same package
12
+ from .text_to_image import TextToImageGenerator
13
+ from .image_to_3d import ImageTo3DGenerator
14
+ from .stub import Stub
15
+
16
+ # Remove the sys.path.append since we'll use relative imports instead
17
+ sys.path.append(
18
+ str(Path(__file__).parent.parent)
19
+ ) # Add parent directory to path for imports
20
+ from llm.client import LLMClient
21
+
22
+ logger = logging.getLogger(__name__)
23
+
24
+
25
+ class PipelineResult:
26
+ """Data class to store the results of a creation pipeline run"""
27
+
28
+ def __init__(
29
+ self,
30
+ success: bool = False,
31
+ original_prompt: str = None,
32
+ expanded_prompt: str = None,
33
+ image_path: str = None,
34
+ image_metadata_path: str = None,
35
+ model_path: str = None,
36
+ model_metadata_path: str = None,
37
+ ):
38
+ self.success = success
39
+ self.original_prompt = original_prompt
40
+ self.expanded_prompt = expanded_prompt
41
+ self.image_path = image_path
42
+ self.image_metadata_path = image_metadata_path
43
+ self.model_path = model_path
44
+ self.model_metadata_path = model_metadata_path
45
+
46
+ def to_dict(self) -> Dict[str, Any]:
47
+ """Convert result to dictionary representation"""
48
+ return {
49
+ "success": self.success,
50
+ "original_prompt": self.original_prompt,
51
+ "expanded_prompt": self.expanded_prompt,
52
+ "image_path": self.image_path,
53
+ "image_metadata_path": self.image_metadata_path,
54
+ "model_path": self.model_path,
55
+ "model_metadata_path": self.model_metadata_path,
56
+ }
57
+
58
+
59
+ class CreativePipeline:
60
+ """
61
+ Orchestrates the end-to-end creative pipeline from prompt to 3D model.
62
+
63
+ Flow:
64
+ 1. Take user prompt
65
+ 2. Enhance with local LLM
66
+ 3. Generate image from enhanced prompt
67
+ 4. Create 3D model from image
68
+ 5. Return comprehensive results
69
+ """
70
+
71
+ def __init__(self, stub: Stub):
72
+ """
73
+ Initialize the creative pipeline components.
74
+
75
+ Args:
76
+ stub: Stub instance for communicating with Openfabric apps
77
+ """
78
+ self.stub = stub
79
+
80
+ # Initialize LLM client
81
+ llm_service_url = os.environ.get("LLM_SERVICE_URL")
82
+ self.llm_client = LLMClient(base_url=llm_service_url)
83
+
84
+ # Initialize generators
85
+ self.text_to_image = TextToImageGenerator(stub)
86
+ self.image_to_3d = ImageTo3DGenerator(stub)
87
+
88
+ # Ensure app/data directories exist
89
+ data_dir = Path(__file__).parent.parent / "data"
90
+ data_dir.mkdir(exist_ok=True)
91
+ (data_dir / "images").mkdir(exist_ok=True)
92
+ (data_dir / "models").mkdir(exist_ok=True)
93
+ (data_dir / "downloads").mkdir(exist_ok=True)
94
+
95
+ logger.info("Creative pipeline initialized successfully")
96
+
97
+ def create(self, prompt: str, params: Dict[str, Any] = None) -> PipelineResult:
98
+ """
99
+ Run the creative pipeline from text prompt to 3D model.
100
+
101
+ Args:
102
+ prompt: The user's text prompt
103
+ params: Optional parameters for the pipeline stages
104
+
105
+ Returns:
106
+ PipelineResult object with paths to generated assets
107
+ """
108
+ try:
109
+ # 1. Enhance the prompt with the LLM
110
+ logger.info(f"Enhancing prompt: '{prompt}'")
111
+ try:
112
+ expanded_prompt = self.llm_client.expand_prompt(prompt)
113
+ logger.info(f"Enhanced prompt: '{expanded_prompt}'")
114
+ except Exception as e:
115
+ logger.warning(f"Failed to enhance prompt: {e}")
116
+ # Fall back to original prompt if enhancement fails
117
+ expanded_prompt = prompt
118
+ logger.info(f"Using original prompt: '{expanded_prompt}'")
119
+
120
+ # 2. Generate image from the enhanced prompt
121
+ image_params = params.get("image", {}) if params else {}
122
+ image_path, image_metadata_path = self.text_to_image.generate(
123
+ expanded_prompt, image_params, original_prompt=prompt
124
+ )
125
+
126
+ # If image_path is None but we have metadata, we need to download from blob store
127
+ if image_path is None and image_metadata_path:
128
+ try:
129
+ # Import the blob viewer downloader directly
130
+ tools_dir = str(Path(__file__).parent.parent / "tools")
131
+ sys.path.append(tools_dir)
132
+
133
+ try:
134
+ # Try direct import first
135
+ from tools.blob_viewer import (
136
+ download_resource,
137
+ construct_resource_url,
138
+ )
139
+ except ImportError:
140
+ # If that fails, use importlib with proper error handling
141
+ blob_viewer_path = os.path.join(tools_dir, "blob_viewer.py")
142
+ spec = importlib.util.spec_from_file_location(
143
+ "blob_viewer", blob_viewer_path
144
+ )
145
+ blob_viewer = importlib.util.module_from_spec(spec)
146
+ spec.loader.exec_module(blob_viewer)
147
+ download_resource = blob_viewer.download_resource
148
+ construct_resource_url = blob_viewer.construct_resource_url
149
+
150
+ # Read metadata to get blob ID and other info
151
+ with open(image_metadata_path, "r") as f:
152
+ metadata = json.load(f)
153
+
154
+ if "result_id" in metadata and metadata["result_id"] != "mock":
155
+ blob_id = metadata["result_id"]
156
+ logger.info(f"Downloading image from blob store: {blob_id}")
157
+
158
+ # Parse the blob ID
159
+ parts = blob_id.split("/")
160
+ data_blob_id = parts[0]
161
+ execution_id = parts[2] if len(parts) > 2 else None
162
+
163
+ # Target directory
164
+ images_dir = Path(__file__).parent.parent / "data" / "images"
165
+
166
+ # Get the existing metadata filename and use it for the image
167
+ metadata_filename = Path(image_metadata_path).name
168
+ base_filename = metadata_filename.rsplit(".", 1)[0]
169
+ image_filename = f"{base_filename}.png"
170
+
171
+ # Prepare full paths
172
+ target_image_path = images_dir / image_filename
173
+
174
+ # Update the metadata file with additional information
175
+ metadata.update(
176
+ {
177
+ "original_prompt": prompt,
178
+ "expanded_prompt": expanded_prompt,
179
+ "needs_download": False, # Mark as downloaded
180
+ }
181
+ )
182
+
183
+ # Write the updated metadata back to the file
184
+ with open(image_metadata_path, "w") as f:
185
+ json.dump(metadata, f, indent=2)
186
+
187
+ # Call the download function with our custom path
188
+ url = construct_resource_url(data_blob_id, execution_id)
189
+ response = requests.get(url)
190
+
191
+ if response.status_code == 200:
192
+ with open(target_image_path, "wb") as f:
193
+ f.write(response.content)
194
+ image_path = str(target_image_path)
195
+ logger.info(f"Generated image at {image_path}")
196
+ else:
197
+ logger.error(
198
+ f"Failed to download image: {response.status_code}"
199
+ )
200
+ return PipelineResult(
201
+ success=False,
202
+ original_prompt=prompt,
203
+ expanded_prompt=expanded_prompt,
204
+ )
205
+ except Exception as e:
206
+ logger.error(f"Failed to download image from blob store: {e}")
207
+ return PipelineResult(
208
+ success=False,
209
+ original_prompt=prompt,
210
+ expanded_prompt=expanded_prompt,
211
+ )
212
+
213
+ # Return early if we couldn't generate an image
214
+ if not image_path:
215
+ logger.error("Failed to generate image")
216
+ return PipelineResult(
217
+ success=False,
218
+ original_prompt=prompt,
219
+ expanded_prompt=expanded_prompt,
220
+ )
221
+
222
+ logger.info(f"Generated image at {image_path}")
223
+
224
+ # 3. Generate 3D model from the image
225
+ model_params = params.get("model", {}) if params else {}
226
+ try:
227
+ logger.info(f"Starting 3D model generation from image: {image_path}")
228
+ # The generate method will now handle all the asynchronous processing internally
229
+ model_path, model_metadata_path = self.image_to_3d.generate(
230
+ image_path, model_params
231
+ )
232
+
233
+ # Verify the model was generated successfully
234
+ if not Path(model_path).exists():
235
+ raise FileNotFoundError(
236
+ f"Generated model file not found at {model_path}"
237
+ )
238
+
239
+ logger.info(f"Successfully generated 3D model at {model_path}")
240
+ logger.info(f"Model metadata saved at {model_metadata_path}")
241
+
242
+ # Load metadata to include additional details in the response
243
+ try:
244
+ with open(model_metadata_path, "r") as f:
245
+ model_metadata = json.load(f)
246
+ logger.info(
247
+ f"3D model format: {model_metadata.get('format', 'unknown')}"
248
+ )
249
+
250
+ # Check for video preview
251
+ if model_metadata.get("has_video_preview") and model_metadata.get(
252
+ "video_path"
253
+ ):
254
+ logger.info(
255
+ f"3D model includes video preview at {model_metadata.get('video_path')}"
256
+ )
257
+ except Exception as metadata_err:
258
+ logger.warning(f"Could not read model metadata: {metadata_err}")
259
+
260
+ # Successful full pipeline
261
+ return PipelineResult(
262
+ success=True,
263
+ original_prompt=prompt,
264
+ expanded_prompt=expanded_prompt,
265
+ image_path=image_path,
266
+ image_metadata_path=image_metadata_path,
267
+ model_path=model_path,
268
+ model_metadata_path=model_metadata_path,
269
+ )
270
+ except Exception as e:
271
+ logger.error(f"Failed to generate 3D model: {e}")
272
+ # Partial pipeline success (image only)
273
+ return PipelineResult(
274
+ success=False,
275
+ original_prompt=prompt,
276
+ expanded_prompt=expanded_prompt,
277
+ image_path=image_path,
278
+ image_metadata_path=image_metadata_path,
279
+ )
280
+
281
+ except Exception as e:
282
+ logger.error(f"Pipeline error: {e}")
283
+ return PipelineResult(success=False, original_prompt=prompt)
284
+
285
+ def health_check(self) -> Dict[str, Any]:
286
+ """
287
+ Check health status of all components.
288
+
289
+ Returns:
290
+ Dictionary with health status of each component
291
+ """
292
+ health = {
293
+ "pipeline": "initializing",
294
+ "llm": "unknown",
295
+ "text_to_image": "unknown",
296
+ "image_to_3d": "unknown",
297
+ }
298
+
299
+ # Check LLM service
300
+ try:
301
+ llm_health = self.llm_client.health_check()
302
+ health["llm"] = (
303
+ "healthy" if llm_health.get("status") == "healthy" else "unhealthy"
304
+ )
305
+ except Exception:
306
+ health["llm"] = "unavailable"
307
+
308
+ # Check text-to-image service
309
+ try:
310
+ # Check if the service has a connection
311
+ if (
312
+ hasattr(self.text_to_image, "stub")
313
+ and hasattr(self.text_to_image.stub, "_connections")
314
+ and self.text_to_image.app_id in self.text_to_image.stub._connections
315
+ ):
316
+ health["text_to_image"] = "healthy"
317
+ else:
318
+ health["text_to_image"] = "degraded"
319
+ except Exception:
320
+ health["text_to_image"] = "unavailable"
321
+
322
+ # Check image-to-3D service
323
+ try:
324
+ # Check if the service has a connection
325
+ if (
326
+ hasattr(self.image_to_3d, "stub")
327
+ and hasattr(self.image_to_3d.stub, "_connections")
328
+ and self.image_to_3d.app_id in self.image_to_3d.stub._connections
329
+ ):
330
+ health["image_to_3d"] = "healthy"
331
+ else:
332
+ health["image_to_3d"] = "degraded"
333
+ except Exception:
334
+ health["image_to_3d"] = "unavailable"
335
+
336
+ # Overall health
337
+ if all(v == "healthy" for v in health.values()):
338
+ health["pipeline"] = "healthy"
339
+ elif "unavailable" in health.values():
340
+ health["pipeline"] = "degraded"
341
+ else:
342
+ health["pipeline"] = "partially available"
343
+
344
+ return health
app/core/remote.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional, Union
2
+
3
+ from openfabric_pysdk.helper import Proxy
4
+ from openfabric_pysdk.helper.proxy import ExecutionResult
5
+
6
+
7
+ class Remote:
8
+ """
9
+ Remote is a helper class that interfaces with an Openfabric Proxy instance
10
+ to send input data, execute computations, and fetch results synchronously
11
+ or asynchronously.
12
+
13
+ Attributes:
14
+ proxy_url (str): The URL to the proxy service.
15
+ proxy_tag (Optional[str]): An optional tag to identify a specific proxy instance.
16
+ client (Optional[Proxy]): The initialized proxy client instance.
17
+ """
18
+
19
+ # ----------------------------------------------------------------------
20
+ def __init__(self, proxy_url: str, proxy_tag: Optional[str] = None):
21
+ """
22
+ Initializes the Remote instance with the proxy URL and optional tag.
23
+
24
+ Args:
25
+ proxy_url (str): The base URL of the proxy.
26
+ proxy_tag (Optional[str]): An optional tag for the proxy instance.
27
+ """
28
+ self.proxy_url = proxy_url
29
+ self.proxy_tag = proxy_tag
30
+ self.client: Optional[Proxy] = None
31
+
32
+ # ----------------------------------------------------------------------
33
+ def connect(self) -> "Remote":
34
+ """
35
+ Establishes a connection with the proxy by instantiating the Proxy client.
36
+
37
+ Returns:
38
+ Remote: The current instance for chaining.
39
+ """
40
+ # self.client = Proxy(self.proxy_url, self.proxy_tag, ssl_verify=False)
41
+
42
+ # Remove ssl_verify parameter since it's not supported by the Proxy class
43
+ self.client = Proxy(self.proxy_url, self.proxy_tag)
44
+ return self
45
+
46
+ # ----------------------------------------------------------------------
47
+ def execute(self, inputs: dict, uid: str) -> Union[ExecutionResult, None]:
48
+ """
49
+ Executes an asynchronous request using the proxy client.
50
+
51
+ Args:
52
+ inputs (dict): The input payload to send to the proxy.
53
+ uid (str): A unique identifier for the request.
54
+
55
+ Returns:
56
+ Union[ExecutionResult, None]: The result of the execution, or None if not connected.
57
+ """
58
+ if self.client is None:
59
+ return None
60
+
61
+ return self.client.request(inputs, uid)
62
+
63
+ # ----------------------------------------------------------------------
64
+ @staticmethod
65
+ def get_response(output: ExecutionResult) -> Union[dict, None]:
66
+ """
67
+ Waits for the result and processes the output.
68
+
69
+ Args:
70
+ output (ExecutionResult): The result returned from a proxy request.
71
+
72
+ Returns:
73
+ Union[dict, None]: The response data if successful, None otherwise.
74
+
75
+ Raises:
76
+ Exception: If the request failed or was cancelled.
77
+ """
78
+ if output is None:
79
+ return None
80
+
81
+ output.wait()
82
+ status = str(output.status()).lower()
83
+ if status == "completed":
84
+ return output.data()
85
+ if status in ("cancelled", "failed"):
86
+ raise Exception("The request to the proxy app failed or was cancelled!")
87
+ return None
88
+
89
+ # ----------------------------------------------------------------------
90
+ def execute_sync(self, inputs: dict, configs: dict, uid: str) -> Union[dict, None]:
91
+ """
92
+ Executes a synchronous request with configuration parameters.
93
+
94
+ Args:
95
+ inputs (dict): The input payload.
96
+ configs (dict): Additional configuration parameters.
97
+ uid (str): A unique identifier for the request.
98
+
99
+ Returns:
100
+ Union[dict, None]: The processed response, or None if not connected.
101
+ """
102
+ if self.client is None:
103
+ return None
104
+
105
+ output = self.client.execute(inputs, configs, uid)
106
+ return Remote.get_response(output)
app/core/stub.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ from typing import Any, Dict, List, Literal, Tuple
3
+
4
+ import requests
5
+
6
+ from .remote import Remote
7
+
8
+ # Type aliases for clarity
9
+ Manifests = Dict[str, dict]
10
+ Schemas = Dict[str, Tuple[dict, dict]]
11
+ Connections = Dict[str, Remote]
12
+
13
+
14
+ class Stub:
15
+ """
16
+ Stub acts as a lightweight client interface that initializes remote connections
17
+ to multiple Openfabric applications, fetching their manifests, schemas, and enabling
18
+ execution of calls to these apps.
19
+
20
+ Attributes:
21
+ _schema (Schemas): Stores input/output schemas for each app ID.
22
+ _manifest (Manifests): Stores manifest metadata for each app ID.
23
+ _connections (Connections): Stores active Remote connections for each app ID.
24
+ """
25
+
26
+ # ----------------------------------------------------------------------
27
+ def __init__(self, app_ids: List[str]):
28
+ """
29
+ Initializes the Stub instance by loading manifests, schemas, and connections
30
+ for each given app ID.
31
+
32
+ Args:
33
+ app_ids (List[str]): A list of application identifiers (hostnames or URLs).
34
+ """
35
+ self._schema: Schemas = {}
36
+ self._manifest: Manifests = {}
37
+ self._connections: Connections = {}
38
+
39
+ for app_id in app_ids:
40
+ base_url = app_id.strip("/")
41
+
42
+ try:
43
+ # Fetch manifest
44
+ manifest = requests.get(f"https://{base_url}/manifest").json()
45
+ logging.info(f"[{app_id}] Manifest loaded.")
46
+ self._manifest[app_id] = manifest
47
+
48
+ # Fetch input schema
49
+ input_schema = requests.get(
50
+ f"https://{base_url}/schema?type=input"
51
+ ).json()
52
+ logging.info(f"[{app_id}] Input schema loaded.")
53
+
54
+ # Fetch output schema
55
+ output_schema = requests.get(
56
+ f"https://{base_url}/schema?type=output"
57
+ ).json()
58
+ logging.info(f"[{app_id}] Output schema loaded.")
59
+ self._schema[app_id] = (input_schema, output_schema)
60
+
61
+ # Establish Remote WebSocket connection
62
+ self._connections[app_id] = Remote(
63
+ f"wss://{base_url}", f"{app_id}-proxy"
64
+ ).connect()
65
+ logging.info(f"[{app_id}] Connection established.")
66
+ except Exception as e:
67
+ logging.error(f"[{app_id}] Initialization failed: {e}")
68
+
69
+ # ----------------------------------------------------------------------
70
+ def call(self, app_id: str, data: Any, uid: str = "super-user") -> dict:
71
+ """
72
+ Sends a request to the specified app via its Remote connection.
73
+
74
+ Args:
75
+ app_id (str): The application ID to route the request to.
76
+ data (Any): The input data to send to the app.
77
+ uid (str): The unique user/session identifier for tracking (default: 'super-user').
78
+
79
+ Returns:
80
+ dict: The output data returned by the app.
81
+
82
+ Raises:
83
+ Exception: If no connection is found for the provided app ID, or execution fails.
84
+ """
85
+ connection = self._connections.get(app_id)
86
+ if not connection:
87
+ raise Exception(f"Connection not found for app ID: {app_id}")
88
+
89
+ try:
90
+ handler = connection.execute(data, uid)
91
+ result = connection.get_response(handler)
92
+ logging.info(f"[{app_id}] Output: {result}")
93
+ return result
94
+ except Exception as e:
95
+ logging.error(f"[{app_id}] Execution failed: {e}")
96
+ raise
97
+
98
+ # ----------------------------------------------------------------------
99
+ def manifest(self, app_id: str) -> dict:
100
+ """
101
+ Retrieves the manifest metadata for a specific application.
102
+
103
+ Args:
104
+ app_id (str): The application ID for which to retrieve the manifest.
105
+
106
+ Returns:
107
+ dict: The manifest data for the app, or an empty dictionary if not found.
108
+ """
109
+ return self._manifest.get(app_id, {})
110
+
111
+ # ----------------------------------------------------------------------
112
+ def schema(self, app_id: str, type: Literal["input", "output"]) -> dict:
113
+ """
114
+ Retrieves the input or output schema for a specific application.
115
+
116
+ Args:
117
+ app_id (str): The application ID for which to retrieve the schema.
118
+ type (Literal['input', 'output']): The type of schema to retrieve.
119
+
120
+ Returns:
121
+ dict: The requested schema (input or output).
122
+
123
+ Raises:
124
+ ValueError: If the schema type is invalid or the schema is not found.
125
+ """
126
+ _input, _output = self._schema.get(app_id, (None, None))
127
+
128
+ if type == "input":
129
+ if _input is None:
130
+ raise ValueError(f"Input schema not found for app ID: {app_id}")
131
+ return _input
132
+ elif type == "output":
133
+ if _output is None:
134
+ raise ValueError(f"Output schema not found for app ID: {app_id}")
135
+ return _output
136
+ else:
137
+ raise ValueError("Type must be either 'input' or 'output'")
app/core/text_to_image.py ADDED
@@ -0,0 +1,259 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import logging
3
+ import base64
4
+ from typing import Dict, Optional, Any, Tuple
5
+ import json
6
+ from pathlib import Path
7
+ import time
8
+ import uuid
9
+ import random
10
+ from dotenv import load_dotenv
11
+
12
+ from .stub import Stub
13
+
14
+ load_dotenv()
15
+
16
+ logger = logging.getLogger(__name__)
17
+
18
+
19
+ class TextToImageGenerator:
20
+ """
21
+ Handles the text-to-image generation using Openfabric's API.
22
+ """
23
+
24
+ def __init__(self, stub: Stub, app_id: str = None):
25
+ """
26
+ Initialize the text-to-image generator.
27
+
28
+ Args:
29
+ stub: Stub instance for communicating with Openfabric
30
+ app_id: The app ID for the text-to-image service (default: from env var)
31
+ """
32
+ self.stub = stub
33
+ self.app_id = app_id or os.environ.get("TEXT_TO_IMAGE_APP_ID")
34
+
35
+ # Use default output directory if IMAGE_OUTPUT_DIR is not set
36
+ image_output_dir = os.environ.get("IMAGE_OUTPUT_DIR")
37
+ if image_output_dir is None:
38
+ # Default to app/data/images
39
+ self.output_dir = Path(__file__).parent.parent / "data" / "images"
40
+ logger.warning(
41
+ f"IMAGE_OUTPUT_DIR not set, using default: {self.output_dir}"
42
+ )
43
+ else:
44
+ self.output_dir = Path(image_output_dir)
45
+
46
+ self.output_dir.mkdir(parents=True, exist_ok=True)
47
+
48
+ # Cache the schema and manifest - don't raise exceptions to allow fallback mode
49
+ try:
50
+ self.input_schema = self.stub.schema(self.app_id, "input")
51
+ self.output_schema = self.stub.schema(self.app_id, "output")
52
+ self.manifest = self.stub.manifest(self.app_id)
53
+ logger.info(
54
+ f"Successfully loaded schema and manifest for text-to-image app: {self.app_id}"
55
+ )
56
+ except Exception as e:
57
+ logger.warning(f"Failed to load schema/manifest for text-to-image app: {e}")
58
+
59
+ def generate(
60
+ self,
61
+ prompt: str,
62
+ params: Optional[Dict[str, Any]] = None,
63
+ original_prompt: str = None,
64
+ ) -> Tuple[str, str]:
65
+ """
66
+ Generate an image from text prompt.
67
+
68
+ Args:
69
+ prompt: The text prompt (expanded by LLM)
70
+ params: Additional parameters for image generation
71
+ original_prompt: The original user prompt (used for naming files)
72
+
73
+ Returns:
74
+ Tuple of (image_path, metadata_path)
75
+ """
76
+ # Use original prompt for naming if provided, otherwise use expanded prompt
77
+ file_naming_prompt = original_prompt if original_prompt else prompt
78
+
79
+ # Prepare the request based on the input schema
80
+ request_data = self._prepare_request(prompt, params)
81
+
82
+ # Log the request
83
+ logger.info(f"Sending text-to-image request with prompt: {prompt[:100]}...")
84
+
85
+ # Send the request to Openfabric
86
+ result = None
87
+ try:
88
+ start_time = time.time()
89
+ result = self.stub.call(self.app_id, request_data)
90
+ generation_time = time.time() - start_time
91
+ logger.info(f"Text-to-image generation completed in {generation_time:.2f}s")
92
+ except Exception as e:
93
+ logger.error(f"Failed to generate image: {e}")
94
+ # Generate a mock response to continue testing
95
+
96
+ # result = self._generate_mock_response(prompt, request_data)
97
+ # logger.warning("Using mock image response due to service error")
98
+
99
+ # Process and save the result
100
+ return self._process_result(result, prompt, file_naming_prompt)
101
+
102
+ def _generate_mock_response(
103
+ self, prompt: str, request_data: Dict[str, Any]
104
+ ) -> Dict[str, Any]:
105
+ """
106
+ Generate a mock image response when the service is unavailable.
107
+
108
+ Args:
109
+ prompt: The text prompt
110
+ request_data: The original request data
111
+
112
+ Returns:
113
+ A mock response with a simple image
114
+ """
115
+ # Create a 1x1 transparent PNG as mock image
116
+ mock_image = ""
117
+
118
+ return {
119
+ "image": mock_image,
120
+ "parameters": {
121
+ "prompt": prompt,
122
+ "width": request_data.get("width", 512),
123
+ "height": request_data.get("height", 512),
124
+ "steps": request_data.get("num_inference_steps", 30),
125
+ "guidance_scale": request_data.get("guidance_scale", 7.5),
126
+ "seed": request_data.get("seed", random.randint(1000, 9999)),
127
+ },
128
+ }
129
+
130
+ def _prepare_request(
131
+ self, prompt: str, params: Optional[Dict[str, Any]] = None
132
+ ) -> Dict[str, Any]:
133
+ """
134
+ Prepare the request payload based on the app's input schema.
135
+ """
136
+ # Default parameters
137
+ default_params = {
138
+ "width": 512,
139
+ "height": 512,
140
+ "guidance_scale": 7.5,
141
+ "num_inference_steps": 30,
142
+ "seed": -1, # Random seed
143
+ "negative_prompt": "blurry, low quality, distorted, deformed",
144
+ }
145
+
146
+ # Override defaults with provided params
147
+ request_params = {**default_params, **(params or {})}
148
+
149
+ # Create request based on schema
150
+ request = {"prompt": prompt, **request_params}
151
+
152
+ return request
153
+
154
+ def _process_result(
155
+ self, result: Dict[str, Any], prompt: str, file_naming_prompt: str
156
+ ) -> Tuple[str, str]:
157
+ """
158
+ Process the result from the text-to-image app.
159
+
160
+ Args:
161
+ result: The API response
162
+ prompt: The original prompt
163
+ file_naming_prompt: The prompt used for naming files
164
+
165
+ Returns:
166
+ Tuple of (image_path, metadata_path)
167
+ """
168
+ # Extract image data or blob ID
169
+ try:
170
+ # Generate a unique ID for this image
171
+ image_id = str(uuid.uuid4())
172
+ timestamp = int(time.time())
173
+
174
+ # Create a more descriptive base filename from the prompt
175
+ if file_naming_prompt:
176
+ # Use first 15 chars of prompt, replacing spaces with underscores
177
+ base_name = (
178
+ file_naming_prompt[:15].strip().replace(" ", "_").replace("/", "_")
179
+ )
180
+ # Remove any other non-alphanumeric characters
181
+ base_name = "".join(c for c in base_name if c.isalnum() or c == "_")
182
+ else:
183
+ base_name = f"image_{timestamp}"
184
+
185
+ # Create paths for metadata
186
+ metadata_filename = f"{base_name}_{timestamp}.json"
187
+ metadata_path = self.output_dir / metadata_filename
188
+
189
+ # Handle real Openfabric response format (which has 'result' field)
190
+ if "result" in result:
191
+ # Log the result ID for reference
192
+ blob_id = result.get("result")
193
+ logger.info(f"Image generation result ID: {blob_id}")
194
+
195
+ # Create metadata for the image that includes the blob ID
196
+ # We won't create actual image file path yet since it will be downloaded
197
+ metadata = {
198
+ "id": image_id,
199
+ "timestamp": timestamp,
200
+ "prompt": prompt,
201
+ "parameters": result.get("parameters", {}),
202
+ "result_id": blob_id,
203
+ "type": "image",
204
+ "needs_download": True,
205
+ "base_name": base_name,
206
+ }
207
+
208
+ with open(metadata_path, "w") as meta_file:
209
+ json.dump(metadata, meta_file, indent=2)
210
+
211
+ logger.info(f"Image metadata saved with result ID: {blob_id}")
212
+ logger.info(f"Use blob_viewer.py to download the actual image")
213
+
214
+ # Return the metadata path but no image path since it needs to be downloaded
215
+ return None, str(metadata_path)
216
+
217
+ # If we have direct image data (which would be rare in real use)
218
+ elif "image" in result:
219
+ # This is the fallback case if we somehow receive direct image data
220
+ image_filename = f"{base_name}_{timestamp}.png"
221
+ image_path = self.output_dir / image_filename
222
+
223
+ image_data = result.get("image")
224
+ if isinstance(image_data, str) and image_data.startswith("data:image"):
225
+ # Extract base64 data after the comma
226
+ image_base64 = image_data.split(",", 1)[1]
227
+ else:
228
+ image_base64 = image_data
229
+
230
+ # Save the image
231
+ image_bytes = base64.b64decode(image_base64)
232
+ with open(image_path, "wb") as img_file:
233
+ img_file.write(image_bytes)
234
+
235
+ # Save metadata
236
+ metadata = {
237
+ "id": image_id,
238
+ "timestamp": timestamp,
239
+ "prompt": prompt,
240
+ "parameters": result.get("parameters", {}),
241
+ "file_path": str(image_path),
242
+ "type": "image",
243
+ "direct_image": True,
244
+ }
245
+
246
+ with open(metadata_path, "w") as meta_file:
247
+ json.dump(metadata, meta_file, indent=2)
248
+
249
+ logger.info(f"Direct image data saved to {image_path}")
250
+ return str(image_path), str(metadata_path)
251
+
252
+ else:
253
+ raise KeyError(
254
+ f"Unexpected response format. Response keys: {list(result.keys())}"
255
+ )
256
+
257
+ except Exception as e:
258
+ logger.error(f"Failed to process image result: {e}")
259
+ raise
app/data/.DS_Store ADDED
Binary file (6.15 kB). View file
 
app/llm/.DS_Store ADDED
Binary file (6.15 kB). View file
 
app/llm/__init__.py ADDED
File without changes
app/llm/client.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import requests
2
+ import logging
3
+ from typing import Optional, Dict, Any
4
+
5
+ logger = logging.getLogger(__name__)
6
+
7
+
8
+ class LLMClient:
9
+ """
10
+ Client for interacting with the LLM service.
11
+ Provides methods to generate text and expand creative prompts.
12
+ """
13
+
14
+ def __init__(self, base_url: str = "http://localhost:8001"):
15
+ """
16
+ Initialize the LLM client.
17
+
18
+ Args:
19
+ base_url: Base URL of the LLM service
20
+ """
21
+ self.base_url = base_url
22
+ self.session = requests.Session()
23
+
24
+ def generate(
25
+ self,
26
+ prompt: str,
27
+ system_prompt: Optional[str] = None,
28
+ max_tokens: int = 512,
29
+ temperature: float = 0.7,
30
+ top_p: float = 0.9,
31
+ ) -> str:
32
+ """
33
+ Generate text based on a prompt.
34
+
35
+ Args:
36
+ prompt: The user prompt to generate from
37
+ system_prompt: Optional system prompt to guide the generation
38
+ max_tokens: Maximum number of tokens to generate
39
+ temperature: Sampling temperature (higher = more creative)
40
+ top_p: Top-p sampling parameter
41
+
42
+ Returns:
43
+ The generated text
44
+
45
+ Raises:
46
+ Exception: If the request fails
47
+ """
48
+ payload = {
49
+ "prompt": prompt,
50
+ "max_tokens": max_tokens,
51
+ "temperature": temperature,
52
+ "top_p": top_p,
53
+ }
54
+
55
+ if system_prompt:
56
+ payload["system_prompt"] = system_prompt
57
+
58
+ try:
59
+ response = self.session.post(f"{self.base_url}/generate", json=payload)
60
+ response.raise_for_status()
61
+ return response.json()["text"]
62
+ except requests.RequestException as e:
63
+ logger.error(f"Failed to generate text: {str(e)}")
64
+ raise Exception(f"LLM service error: {str(e)}")
65
+
66
+ def expand_prompt(self, prompt: str) -> str:
67
+ """
68
+ Expand a creative prompt with rich details.
69
+
70
+ Args:
71
+ prompt: The user's original prompt
72
+
73
+ Returns:
74
+ An expanded, detailed creative prompt
75
+
76
+ Raises:
77
+ Exception: If the request fails
78
+ """
79
+ try:
80
+ response = self.session.post(
81
+ f"{self.base_url}/expand", json={"prompt": prompt}
82
+ )
83
+ response.raise_for_status()
84
+ return response.json()["text"]
85
+ except requests.RequestException as e:
86
+ logger.error(f"Failed to expand prompt: {str(e)}")
87
+ raise Exception(f"LLM service error: {str(e)}")
88
+
89
+ def health_check(self) -> Dict[str, Any]:
90
+ """
91
+ Check if the LLM service is healthy.
92
+
93
+ Returns:
94
+ Health status information
95
+
96
+ Raises:
97
+ Exception: If the health check fails
98
+ """
99
+ try:
100
+ response = self.session.get(f"{self.base_url}/health")
101
+ response.raise_for_status()
102
+ return response.json()
103
+ except requests.RequestException as e:
104
+ logger.error(f"Health check failed: {str(e)}")
105
+ raise Exception(f"LLM service error: {str(e)}")
app/llm/model.py ADDED
@@ -0,0 +1,237 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from typing import Dict, List, Optional, Union
3
+ import logging
4
+ import torch
5
+ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, AutoConfig
6
+
7
+ logger = logging.getLogger(__name__)
8
+
9
+
10
+ class LocalLLM:
11
+ """
12
+ A wrapper for running local LLMs using the Hugging Face Transformers library.
13
+ Optimized for creative prompt expansion and interpretation.
14
+ """
15
+
16
+ def __init__(
17
+ self,
18
+ model_path: str = "meta-llama/Llama-3.2-3B-Instruct",
19
+ device_map: str = "auto",
20
+ torch_dtype=None,
21
+ ):
22
+ """
23
+ Initialize the local LLM.
24
+
25
+ Args:
26
+ model_path: Path to model or HuggingFace model ID
27
+ device_map: Device mapping strategy (default: "auto")
28
+ torch_dtype: Torch data type (default: bfloat16 if available, otherwise float16)
29
+ """
30
+ self.model_path = model_path
31
+ self.device_map = device_map
32
+
33
+ if torch_dtype is None:
34
+ # Set default dtype based on device
35
+ if device_map == "mps":
36
+ # Apple Silicon uses float16
37
+ self.torch_dtype = torch.float16
38
+ elif (
39
+ torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8
40
+ ):
41
+ # Modern NVIDIA GPUs use bfloat16
42
+ self.torch_dtype = torch.bfloat16
43
+ else:
44
+ # Default to float16 for other cases
45
+ self.torch_dtype = torch.float16
46
+ else:
47
+ self.torch_dtype = torch_dtype
48
+
49
+ logger.info(f"Loading LLM from {model_path}")
50
+ logger.info(f"Using device: {device_map}, dtype: {self.torch_dtype}")
51
+
52
+ try:
53
+ # Load model and tokenizer directly instead of using pipeline
54
+ # This gives us more control over the configuration
55
+
56
+ # First, load and fix the config
57
+ config = AutoConfig.from_pretrained(model_path)
58
+
59
+ # Fix the rope_scaling issue for Llama models
60
+ if hasattr(config, "rope_scaling") and isinstance(
61
+ config.rope_scaling, dict
62
+ ):
63
+ # Ensure the type key exists and is set to linear
64
+ config.rope_scaling["type"] = "linear"
65
+ logger.info("Fixed rope_scaling configuration with type=linear")
66
+ elif not hasattr(config, "rope_scaling"):
67
+ # If no rope_scaling exists, add a basic one
68
+ config.rope_scaling = {"type": "linear", "factor": 1.0}
69
+ logger.info("Added default rope_scaling configuration")
70
+
71
+ # Load the tokenizer
72
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
73
+
74
+ # Load the model with our fixed config
75
+ if device_map == "mps":
76
+ # For Apple Silicon, load to device directly
77
+ model = AutoModelForCausalLM.from_pretrained(
78
+ model_path,
79
+ config=config,
80
+ torch_dtype=self.torch_dtype,
81
+ device_map={"": "mps"}, # Map all modules to MPS device
82
+ )
83
+ else:
84
+ # For other devices, use the device_map parameter
85
+ model = AutoModelForCausalLM.from_pretrained(
86
+ model_path,
87
+ config=config,
88
+ torch_dtype=self.torch_dtype,
89
+ device_map=device_map,
90
+ )
91
+
92
+ # Create the pipeline with our pre-loaded model and tokenizer
93
+ self.pipe = pipeline(
94
+ "text-generation", model=model, tokenizer=tokenizer, framework="pt"
95
+ )
96
+
97
+ logger.info("LLM loaded successfully")
98
+
99
+ except Exception as e:
100
+ logger.error(f"Failed to load model: {str(e)}")
101
+ raise
102
+
103
+ def generate(
104
+ self,
105
+ prompt: str,
106
+ system_prompt: Optional[str] = None,
107
+ max_tokens: int = 512,
108
+ temperature: float = 0.7,
109
+ top_p: float = 0.9,
110
+ ) -> str:
111
+ """
112
+ Generate text based on a prompt with the local LLM.
113
+
114
+ Args:
115
+ prompt: The user prompt to generate from
116
+ system_prompt: Optional system prompt to guide the generation
117
+ max_tokens: Maximum number of tokens to generate
118
+ temperature: Sampling temperature (higher = more creative)
119
+ top_p: Top-p sampling parameter
120
+
121
+ Returns:
122
+ The generated text
123
+ """
124
+ # Format messages for chat-style models
125
+ messages = []
126
+
127
+ # Add system prompt if provided
128
+ if system_prompt:
129
+ messages.append({"role": "system", "content": system_prompt})
130
+
131
+ # Add user prompt
132
+ messages.append({"role": "user", "content": prompt})
133
+
134
+ logger.debug(f"Generating with prompt: {prompt[:100]}...")
135
+
136
+ try:
137
+ # Generate response using the pipeline
138
+ outputs = self.pipe(
139
+ messages,
140
+ max_new_tokens=max_tokens,
141
+ temperature=temperature,
142
+ top_p=top_p,
143
+ do_sample=True,
144
+ )
145
+
146
+ # Extract the assistant's response
147
+ response = outputs[0]["generated_text"][-1]["content"]
148
+ return response
149
+
150
+ except Exception as e:
151
+ logger.error(f"Error during generation: {str(e)}")
152
+ return ""
153
+
154
+ def expand_creative_prompt(self, prompt: str) -> str:
155
+ """
156
+ Specifically designed to expand a user prompt into a more detailed,
157
+ creative description suitable for image generation.
158
+
159
+ Args:
160
+ prompt: The user's original prompt
161
+
162
+ Returns:
163
+ An expanded, detailed creative prompt
164
+ """
165
+ system_prompt = """You are a creative assistant specializing in enhancing text prompts for image and 3D model generation.
166
+ When given a simple prompt, expand it with rich, vivid details about:
167
+ - Visual elements and composition
168
+ - Lighting, colors, and atmosphere
169
+ - Style, mood, and artistic influence
170
+ - Textures and materials
171
+ - Perspective and framing
172
+
173
+ Keep your response focused only on the enhanced visual description without explanations or comments.
174
+ Limit to 3-4 sentences maximum, ensuring it's concise yet richly detailed."""
175
+
176
+ # Generate the expanded prompt
177
+ expanded = self.generate(
178
+ prompt=prompt,
179
+ system_prompt=system_prompt,
180
+ max_tokens=256,
181
+ temperature=0.8, # Slightly higher temperature for creativity
182
+ )
183
+
184
+ logger.info(f"Expanded prompt: {expanded[:100]}...")
185
+ return expanded
186
+
187
+
188
+ def get_llm_instance(model_path: Optional[str] = None) -> LocalLLM:
189
+ """
190
+ Factory function to get a LocalLLM instance with default settings.
191
+
192
+ Args:
193
+ model_path: Optional path to model or HuggingFace model ID
194
+
195
+ Returns:
196
+ A LocalLLM instance
197
+ """
198
+ # If model path not provided, first check for MODEL_PATH, then MODEL_ID from environment
199
+ if not model_path:
200
+ model_path = os.environ.get("MODEL_PATH") or os.environ.get(
201
+ "MODEL_ID", "meta-llama/Llama-3.2-3B-Instruct"
202
+ )
203
+
204
+ # Check if the provided path is a local directory
205
+ if os.path.isdir(model_path):
206
+ logger.info(f"Using local model directory: {model_path}")
207
+ else:
208
+ logger.info(f"Using model ID from Hugging Face: {model_path}")
209
+
210
+ # Check available device backends
211
+ device_map = "auto"
212
+ torch_dtype = None
213
+
214
+ # Check for Apple Silicon (M1/M2/M3) MPS support
215
+ if torch.backends.mps.is_available():
216
+ logger.info(
217
+ "Apple Silicon MPS is available. Using MPS backend for accelerated inference."
218
+ )
219
+ device_map = "mps"
220
+ torch_dtype = torch.float16
221
+ # Otherwise check if CUDA is available
222
+ elif torch.cuda.is_available():
223
+ logger.info(f"CUDA is available. Using {torch.cuda.get_device_name(0)}")
224
+ if torch.cuda.get_device_capability()[0] >= 8:
225
+ # For Ampere architecture (30XX, A100, etc.) use bfloat16
226
+ torch_dtype = torch.bfloat16
227
+ else:
228
+ # For older architectures use float16
229
+ torch_dtype = torch.float16
230
+ else:
231
+ logger.warning(
232
+ "No GPU acceleration available. Using CPU. This may be slow for inference."
233
+ )
234
+
235
+ return LocalLLM(
236
+ model_path=model_path, device_map=device_map, torch_dtype=torch_dtype
237
+ )
app/llm/service.py ADDED
@@ -0,0 +1,213 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import logging
3
+ import time
4
+ import sys
5
+ from fastapi import FastAPI, HTTPException, Request
6
+ from fastapi.middleware.cors import CORSMiddleware
7
+ from pydantic import BaseModel
8
+ from typing import Optional
9
+ import psutil
10
+ import uvicorn
11
+ from dotenv import load_dotenv
12
+ from pathlib import Path
13
+ from model import LocalLLM, get_llm_instance
14
+
15
+ # Configure logging first
16
+ logging.basicConfig(
17
+ level=logging.INFO,
18
+ format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
19
+ handlers=[
20
+ logging.StreamHandler(sys.stdout),
21
+ logging.FileHandler(os.path.join(os.path.dirname(__file__), "llm_service.log")),
22
+ ],
23
+ )
24
+ logger = logging.getLogger("llm_service")
25
+
26
+ # Try to load .env file from project root
27
+ env_path = Path(__file__).parents[2] / ".env"
28
+ if env_path.exists():
29
+ load_dotenv(dotenv_path=env_path)
30
+ logger.info(f"Loaded environment variables from {env_path}")
31
+
32
+
33
+ # Initialize FastAPI app
34
+ app = FastAPI(title="Local LLM Service", description="API for local LLM interaction")
35
+
36
+ # Add CORS middleware
37
+ app.add_middleware(
38
+ CORSMiddleware,
39
+ allow_origins=["*"],
40
+ allow_credentials=True,
41
+ allow_methods=["*"],
42
+ allow_headers=["*"],
43
+ )
44
+
45
+
46
+ # Request timing middleware
47
+ @app.middleware("http")
48
+ async def log_requests(request: Request, call_next):
49
+ start_time = time.time()
50
+ logger.info(f"Request started: {request.method} {request.url.path}")
51
+
52
+ response = await call_next(request)
53
+
54
+ process_time = time.time() - start_time
55
+ logger.info(
56
+ f"Request completed: {request.method} {request.url.path} - Status: {response.status_code} - Duration: {process_time:.4f}s"
57
+ )
58
+
59
+ return response
60
+
61
+
62
+ # Model request and response classes
63
+ class PromptRequest(BaseModel):
64
+ prompt: str
65
+ system_prompt: Optional[str] = None
66
+ max_tokens: int = 512
67
+ temperature: float = 0.7
68
+ top_p: float = 0.9
69
+
70
+
71
+ class ExpandRequest(BaseModel):
72
+ prompt: str
73
+
74
+
75
+ class LLMResponse(BaseModel):
76
+ text: str
77
+
78
+
79
+ # Global LLM instance
80
+ llm = None
81
+
82
+
83
+ @app.on_event("startup")
84
+ async def startup_event():
85
+ """Initialize the LLM on startup"""
86
+ global llm
87
+ logger.info("Starting LLM service initialization...")
88
+
89
+ # First check for MODEL_PATH (local model), then fall back to MODEL_ID
90
+ model_path = os.environ.get("MODEL_PATH")
91
+ if model_path and os.path.isdir(model_path):
92
+ logger.info(f"Using local model from MODEL_PATH: {model_path}")
93
+ else:
94
+ # Fall back to MODEL_ID if MODEL_PATH isn't set or doesn't exist
95
+ model_path = os.environ.get("MODEL_ID", "meta-llama/Llama-3.2-3B-Instruct")
96
+ logger.info(f"Using model ID from Hugging Face: {model_path}")
97
+
98
+ try:
99
+ start_time = time.time()
100
+ llm = get_llm_instance(model_path)
101
+ init_time = time.time() - start_time
102
+
103
+ logger.info(
104
+ f"LLM initialized successfully with model: {model_path} in {init_time:.2f} seconds"
105
+ )
106
+
107
+ memory = psutil.virtual_memory()
108
+ logger.info(
109
+ f"System memory: {memory.percent}% used ({memory.used / (1024**3):.1f}GB / {memory.total / (1024**3):.1f}GB)"
110
+ )
111
+
112
+ except Exception as e:
113
+ logger.error(f"Failed to initialize LLM: {str(e)}", exc_info=True)
114
+ raise
115
+
116
+
117
+ @app.post("/generate", response_model=LLMResponse)
118
+ async def generate_text(request: PromptRequest):
119
+ """Generate text based on a prompt"""
120
+ logger.info(
121
+ f"Received text generation request, prompt length: {len(request.prompt)} chars"
122
+ )
123
+ logger.debug(f"Prompt: {request.prompt[:50]}...")
124
+
125
+ if not llm:
126
+ logger.error("LLM service not initialized when generate endpoint was called")
127
+ raise HTTPException(status_code=503, detail="LLM service not initialized")
128
+
129
+ try:
130
+ start_time = time.time()
131
+
132
+ logger.info(
133
+ f"Generation parameters: max_tokens={request.max_tokens}, temperature={request.temperature}, top_p={request.top_p}"
134
+ )
135
+
136
+ response = llm.generate(
137
+ prompt=request.prompt,
138
+ system_prompt=request.system_prompt,
139
+ max_tokens=request.max_tokens,
140
+ temperature=request.temperature,
141
+ top_p=request.top_p,
142
+ )
143
+
144
+ generation_time = time.time() - start_time
145
+ response_length = len(response)
146
+
147
+ logger.info(
148
+ f"Text generation completed in {generation_time:.2f}s, response length: {response_length} chars"
149
+ )
150
+ logger.debug(f"Generated response: {response[:50]}...")
151
+
152
+ return LLMResponse(text=response)
153
+ except Exception as e:
154
+ logger.error(f"Error generating text: {str(e)}", exc_info=True)
155
+ raise HTTPException(status_code=500, detail=str(e))
156
+
157
+
158
+ @app.post("/expand", response_model=LLMResponse)
159
+ async def expand_prompt(request: ExpandRequest):
160
+ """Expand a creative prompt with rich details"""
161
+ logger.info(f"Received prompt expansion request, prompt: '{request.prompt}'")
162
+
163
+ if not llm:
164
+ logger.error("LLM service not initialized when expand endpoint was called")
165
+ raise HTTPException(status_code=503, detail="LLM service not initialized")
166
+
167
+ try:
168
+ start_time = time.time()
169
+
170
+ expanded = llm.expand_creative_prompt(request.prompt)
171
+
172
+ expansion_time = time.time() - start_time
173
+ expanded_length = len(expanded)
174
+
175
+ logger.info(
176
+ f"Prompt expansion completed in {expansion_time:.2f}s, original length: {len(request.prompt)}, expanded length: {expanded_length}"
177
+ )
178
+ logger.debug(f"Original: '{request.prompt}'")
179
+ logger.debug(f"Expanded: '{expanded}'")
180
+
181
+ return LLMResponse(text=expanded)
182
+ except Exception as e:
183
+ logger.error(f"Error expanding prompt: {str(e)}", exc_info=True)
184
+ raise HTTPException(status_code=500, detail=str(e))
185
+
186
+
187
+ @app.get("/health")
188
+ async def health_check():
189
+ """Health check endpoint"""
190
+ logger.debug("Health check endpoint called")
191
+
192
+ if llm:
193
+ logger.info(f"Health check: LLM service is healthy, model: {llm.model_path}")
194
+ return {"status": "healthy", "model": llm.model_path}
195
+
196
+ logger.warning("Health check: LLM service is still initializing")
197
+ return {"status": "initializing"}
198
+
199
+
200
+ # Start the service if run directly
201
+ if __name__ == "__main__":
202
+
203
+ # Check for psutil dependency
204
+ try:
205
+ import psutil
206
+ except ImportError:
207
+ logger.warning(
208
+ "psutil not installed. Some system resource metrics will not be available."
209
+ )
210
+ logger.warning("Install with: pip install psutil")
211
+
212
+ logger.info("Starting LLM service server")
213
+ uvicorn.run(app, host="0.0.0.0", port=8001)
app/main.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import os
3
+ from typing import Dict
4
+ from pathlib import Path
5
+ from dotenv import load_dotenv
6
+
7
+ from ontology_dc8f06af066e4a7880a5938933236037.config import ConfigClass
8
+ from ontology_dc8f06af066e4a7880a5938933236037.input import InputClass
9
+ from ontology_dc8f06af066e4a7880a5938933236037.output import OutputClass
10
+ from openfabric_pysdk.context import State
11
+ from core.stub import Stub
12
+ from core.pipeline import CreativePipeline
13
+
14
+
15
+ load_dotenv()
16
+
17
+ # Configure logging
18
+ logging.basicConfig(
19
+ level=logging.INFO,
20
+ format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
21
+ )
22
+ logger = logging.getLogger(__name__)
23
+
24
+ # Configurations for the app
25
+ configurations: Dict[str, ConfigClass] = dict()
26
+
27
+
28
+ ############################################################
29
+ # Config callback function
30
+ ############################################################
31
+ def config(configuration: Dict[str, ConfigClass], state: State) -> None:
32
+ """
33
+ Stores user-specific configuration data.
34
+
35
+ Args:
36
+ configuration (Dict[str, ConfigClass]): A mapping of user IDs to configuration objects.
37
+ state (State): The current state of the application (not used in this implementation).
38
+ """
39
+ for uid, conf in configuration.items():
40
+ logging.info(f"Saving new config for user with id:'{uid}'")
41
+ configurations[uid] = conf
42
+
43
+
44
+ ############################################################
45
+ # Execution callback function
46
+ ############################################################
47
+ def execute(request_data) -> None:
48
+ """
49
+ Main execution entry point for handling a model pass.
50
+
51
+ Args:
52
+ request_data: The object containing request and response structures.
53
+ """
54
+
55
+ # Retrieve input
56
+ request: InputClass = request_data.request
57
+ user_prompt = request.prompt
58
+
59
+ # Log the incoming request
60
+ logger.info(f"Received request with prompt: '{user_prompt}'")
61
+
62
+ # Retrieve user config
63
+ user_config: ConfigClass = configurations.get("super-user", None)
64
+ logger.info(f"Using configuration: {configurations}")
65
+
66
+ # Initialize the Stub with app IDs
67
+ app_ids = user_config.app_ids if user_config else []
68
+
69
+ # Make sure app IDs are available
70
+ if not app_ids:
71
+ text_to_image_app_id = os.environ.get("TEXT_TO_IMAGE_APP_ID")
72
+ image_to_3d_app_id = os.environ.get("IMAGE_TO_3D_APP_ID")
73
+ app_ids = [text_to_image_app_id, image_to_3d_app_id]
74
+ logger.info(
75
+ f"No app_ids found in config, using environment defaults: {app_ids}"
76
+ )
77
+
78
+ stub = Stub(app_ids)
79
+
80
+ # Create the creative pipeline
81
+ pipeline = CreativePipeline(stub)
82
+
83
+ # Execute the creative pipeline
84
+ try:
85
+ logger.info(f"Executing creative pipeline for prompt: '{user_prompt}'")
86
+ result = pipeline.create(prompt=user_prompt)
87
+
88
+ if result.success:
89
+ response_message = (
90
+ f"Created successfully! From your prompt '{user_prompt}', "
91
+ f"I generated an image and a 3D model."
92
+ )
93
+ logger.info(f"Pipeline completed successfully: {result.to_dict()}")
94
+ else:
95
+ if result.image_path:
96
+ response_message = (
97
+ f"Partially completed. I was able to generate an image from "
98
+ f"your prompt '{user_prompt}', but couldn't create the 3D model."
99
+ )
100
+ logger.warning(f"Pipeline partially completed: {result.to_dict()}")
101
+ else:
102
+ response_message = (
103
+ f"I'm sorry, I couldn't process your request '{user_prompt}'. "
104
+ f"Please try again with a different description."
105
+ )
106
+ logger.error(f"Pipeline failed: {result.to_dict()}")
107
+ except Exception as e:
108
+ logger.error(f"Error executing pipeline: {e}")
109
+ response_message = f"An error occurred while processing your request: {str(e)}"
110
+
111
+ # Prepare response
112
+ response: OutputClass = request_data.response
113
+ response.message = response_message
app/ontology_dc8f06af066e4a7880a5938933236037/__init__.py ADDED
File without changes
app/ontology_dc8f06af066e4a7880a5938933236037/config.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+ from typing import List
3
+
4
+ from marshmallow import Schema, fields, post_load
5
+
6
+ from openfabric_pysdk.utility import SchemaUtil
7
+
8
+
9
+ ################################################################
10
+ # Config concept class - AUTOGENERATED
11
+ ################################################################
12
+ @dataclass
13
+ class ConfigClass:
14
+ app_ids: List[str] = None
15
+
16
+
17
+ ################################################################
18
+ # ConfigSchema concept class - AUTOGENERATED
19
+ ################################################################
20
+ class ConfigClassSchema(Schema):
21
+ app_ids = fields.List(fields.String())
22
+
23
+ @post_load
24
+ def create(self, data, **kwargs):
25
+ return SchemaUtil.create(ConfigClass(), data)
app/ontology_dc8f06af066e4a7880a5938933236037/input.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from decimal import *
2
+ from datetime import *
3
+ from typing import *
4
+
5
+ from dataclasses import dataclass
6
+ from marshmallow import Schema, fields, post_load
7
+ from openfabric_pysdk.utility import SchemaUtil
8
+
9
+
10
+ ################################################################
11
+ # Input concept class - AUTOGENERATED
12
+ ################################################################
13
+ @dataclass
14
+ class InputClass:
15
+ prompt: str = None
16
+ attachments: List[str] = None
17
+
18
+
19
+ ################################################################
20
+ # InputSchema concept class - AUTOGENERATED
21
+ ################################################################
22
+ class InputClassSchema(Schema):
23
+ prompt = fields.String(allow_none=True)
24
+ attachments = fields.List(fields.String(allow_none=True), allow_none=True)
25
+
26
+ @post_load
27
+ def create(self, data, **kwargs):
28
+ return SchemaUtil.create(InputClass(), data)
app/ontology_dc8f06af066e4a7880a5938933236037/output.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+ from marshmallow import Schema, fields, post_load
3
+
4
+ # Removed import as Resource doesn't exist in this version of openfabric_pysdk
5
+ # from openfabric_pysdk.fields import Resource
6
+ from openfabric_pysdk.utility import SchemaUtil
7
+
8
+
9
+ ################################################################
10
+ # Output concept class - AUTOGENERATED
11
+ ################################################################
12
+ @dataclass
13
+ class OutputClass:
14
+ message: str = None
15
+
16
+
17
+ ################################################################
18
+ # OutputSchema concept class - AUTOGENERATED
19
+ ################################################################
20
+ class OutputClassSchema(Schema):
21
+ message = fields.Str(allow_none=True)
22
+
23
+ @post_load
24
+ def create(self, data, **kwargs):
25
+ return SchemaUtil.create(OutputClass(), data)
app/tools/__init__.py ADDED
File without changes
app/tools/blob_viewer.py ADDED
@@ -0,0 +1,216 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ """
3
+ Openfabric Blob Viewer - A utility for viewing and downloading resources from Openfabric
4
+
5
+ Usage:
6
+ python blob_viewer.py view <data_blob_id> [<execution_id>]
7
+ python blob_viewer.py download <data_blob_id> [<execution_id>]
8
+
9
+ Examples:
10
+ # View an image directly in browser
11
+ python blob_viewer.py view data_blob_1d9d210d20c1e75ea6a3855b6d10341fd8f125b49866b61b7ae94f8fa4bffd49 2d529306be574949a2a3d2f9d9e4082b
12
+
13
+ # Download a resource
14
+ python blob_viewer.py download data_blob_1d9d210d20c1e75ea6a3855b6d10341fd8f125b49866b61b7ae94f8fa4bffd49 2d529306be574949a2a3d2f9d9e4082b
15
+ """
16
+
17
+ import os
18
+ import sys
19
+ import argparse
20
+ import webbrowser
21
+ import requests
22
+ from pathlib import Path
23
+ from dotenv import load_dotenv
24
+ import base64
25
+ import json
26
+ from datetime import datetime
27
+
28
+ # Make sure we can import from our app
29
+ sys.path.insert(0, str(Path(__file__).parent.parent))
30
+
31
+ # Load environment variables
32
+ load_dotenv()
33
+
34
+ # Configure output directory for downloads
35
+ OUTPUT_DIR = Path(__file__).parent.parent / "data" / "downloads"
36
+ OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
37
+
38
+ # Get app IDs from environment
39
+ TEXT_TO_IMAGE_APP_ID = os.environ.get("TEXT_TO_IMAGE_APP_ID")
40
+ IMAGE_TO_3D_APP_ID = os.environ.get("IMAGE_TO_3D_APP_ID")
41
+
42
+
43
+ def construct_resource_url(data_blob_id, execution_id=None):
44
+ """
45
+ Construct the URL for accessing a resource from a data_blob ID
46
+
47
+ Args:
48
+ data_blob_id: The data_blob ID (can be full path or just the ID)
49
+ execution_id: Optional execution ID
50
+
51
+ Returns:
52
+ URL to access the resource
53
+ """
54
+ # Extract the actual blob ID if provided with path format
55
+ if "/" in data_blob_id:
56
+ parts = data_blob_id.split("/")
57
+ data_blob_id = parts[0]
58
+ if len(parts) > 2 and not execution_id:
59
+ execution_id = parts[2]
60
+
61
+ # Create the reid parameter value
62
+ reid = data_blob_id
63
+ if execution_id:
64
+ reid = f"{data_blob_id}/executions/{execution_id}"
65
+
66
+ # Format the URL correctly based on the example
67
+ base_url = f"https://{TEXT_TO_IMAGE_APP_ID}/resource?reid={reid}"
68
+
69
+ return base_url
70
+
71
+
72
+ def open_in_browser(data_blob_id, execution_id=None):
73
+ """Open a resource directly in the web browser"""
74
+ url = construct_resource_url(data_blob_id, execution_id)
75
+ print(f"Opening URL in browser: {url}")
76
+ webbrowser.open(url)
77
+
78
+
79
+ def download_resource(
80
+ data_blob_id, execution_id=None, prompt=None, target_dir=None, metadata=None
81
+ ):
82
+ """
83
+ Download a resource from the given data_blob ID
84
+
85
+ Args:
86
+ data_blob_id: The data_blob ID
87
+ execution_id: Optional execution ID
88
+ prompt: Optional prompt text to use in filename
89
+ target_dir: Optional target directory to save to (defaults to downloads)
90
+ metadata: Optional metadata to save alongside the downloaded file
91
+ """
92
+ url = construct_resource_url(data_blob_id, execution_id)
93
+
94
+ # Use downloads directory as default if not specified
95
+ if target_dir:
96
+ output_dir = Path(target_dir)
97
+ else:
98
+ output_dir = OUTPUT_DIR
99
+
100
+ # Ensure the output directory exists
101
+ output_dir.mkdir(parents=True, exist_ok=True)
102
+
103
+ try:
104
+ print(f"Downloading from: {url}")
105
+ response = requests.get(url)
106
+
107
+ if response.status_code == 200:
108
+ # Determine content type and extension
109
+ content_type = response.headers.get(
110
+ "Content-Type", "application/octet-stream"
111
+ )
112
+
113
+ # Choose file extension based on content type
114
+ extension = "bin" # Default extension
115
+ if "image/png" in content_type:
116
+ extension = "png"
117
+ elif "image/jpeg" in content_type:
118
+ extension = "jpg"
119
+ elif (
120
+ "model/gltf+json" in content_type or "application/json" in content_type
121
+ ):
122
+ extension = "gltf"
123
+ elif "model/gltf-binary" in content_type:
124
+ extension = "glb"
125
+
126
+ # Create filename based on prompt if available
127
+ if prompt:
128
+ # Use first 15 chars of prompt, replacing spaces with underscores
129
+ base_name = prompt[:15].strip().replace(" ", "_").replace("/", "_")
130
+ # Remove any other non-alphanumeric characters
131
+ base_name = "".join(c for c in base_name if c.isalnum() or c == "_")
132
+
133
+ # Add timestamp for uniqueness
134
+ timestamp = int(datetime.now().timestamp())
135
+ filename = f"{base_name}_{timestamp}.{extension}"
136
+
137
+ # Also create metadata filename
138
+ metadata_filename = f"{base_name}_{timestamp}.json"
139
+ else:
140
+ # Fallback to timestamp and blob ID if no prompt
141
+ timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
142
+ clean_blob_id = data_blob_id.replace("/", "_")
143
+
144
+ if execution_id:
145
+ filename = f"{timestamp}_{clean_blob_id[:8]}_{execution_id[:8]}.{extension}"
146
+ else:
147
+ filename = f"{timestamp}_{clean_blob_id[:8]}.{extension}"
148
+
149
+ # Also create metadata filename
150
+ metadata_filename = filename.replace(f".{extension}", ".json")
151
+
152
+ output_path = output_dir / filename
153
+ metadata_path = output_dir / metadata_filename
154
+
155
+ # Save the file
156
+ with open(output_path, "wb") as f:
157
+ f.write(response.content)
158
+
159
+ # Create and save metadata
160
+ if metadata:
161
+ metadata["download_timestamp"] = int(datetime.now().timestamp())
162
+ metadata["download_source"] = url
163
+ metadata["file_path"] = str(output_path)
164
+
165
+ with open(metadata_path, "w") as f:
166
+ json.dump(metadata, f, indent=2)
167
+
168
+ print(f"Successfully downloaded to: {output_path}")
169
+ return str(output_path)
170
+ else:
171
+ print(f"Failed to download resource. Status code: {response.status_code}")
172
+ print(f"Response: {response.text}")
173
+ return None
174
+
175
+ except Exception as e:
176
+ print(f"Error downloading resource: {str(e)}")
177
+ return None
178
+
179
+
180
+ def parse_args():
181
+ """Parse command line arguments"""
182
+ parser = argparse.ArgumentParser(description="Openfabric Blob Viewer")
183
+ subparsers = parser.add_subparsers(dest="command", help="Command to run")
184
+
185
+ # View command
186
+ view_parser = subparsers.add_parser("view", help="View a blob in browser")
187
+ view_parser.add_argument("data_blob_id", help="Blob ID or full path")
188
+ view_parser.add_argument("execution_id", nargs="?", help="Execution ID (optional)")
189
+
190
+ # Download command
191
+ download_parser = subparsers.add_parser("download", help="Download a blob")
192
+ download_parser.add_argument("data_blob_id", help="Blob ID or full path")
193
+ download_parser.add_argument(
194
+ "execution_id", nargs="?", help="Execution ID (optional)"
195
+ )
196
+
197
+ return parser.parse_args()
198
+
199
+
200
+ def main():
201
+ args = parse_args()
202
+
203
+ if not args.command:
204
+ print(__doc__)
205
+ return
206
+
207
+ if args.command == "view":
208
+ open_in_browser(args.data_blob_id, args.execution_id)
209
+ elif args.command == "download":
210
+ download_resource(args.data_blob_id, args.execution_id)
211
+ else:
212
+ print(__doc__)
213
+
214
+
215
+ if __name__ == "__main__":
216
+ main()
app/ui/app.py ADDED
@@ -0,0 +1,407 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ """
3
+ AI Creative Application UI - Modified for stability and Hugging Face Spaces compatibility
4
+ """
5
+
6
+ import os
7
+ import sys
8
+ import logging
9
+ import time
10
+ import json
11
+ from pathlib import Path
12
+ from dotenv import load_dotenv
13
+ import gradio as gr
14
+
15
+ # Configure logging
16
+ logging.basicConfig(
17
+ level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
18
+ )
19
+ logger = logging.getLogger("ui")
20
+
21
+ # Add the parent directory to sys.path to import app modules
22
+ sys.path.append(str(Path(__file__).parent.parent))
23
+
24
+ # Set environment variable to disable SSL verification for httpx
25
+ os.environ["HTTPX_VERIFY"] = "0"
26
+
27
+ # Detect if running in Hugging Face Spaces
28
+ RUNNING_IN_SPACES = os.environ.get("HF_SPACES", "0") == "1"
29
+
30
+ # Load environment variables if .env exists and not in HF Spaces
31
+ if not RUNNING_IN_SPACES:
32
+ dotenv_path = Path(__file__).parent.parent.parent / ".env"
33
+ if dotenv_path.exists():
34
+ load_dotenv(dotenv_path=dotenv_path)
35
+ logger.info(f"Loaded environment from {dotenv_path}")
36
+ else:
37
+ logger.warning(f".env file not found at {dotenv_path}")
38
+ else:
39
+ logger.info("Running in Hugging Face Spaces environment")
40
+
41
+ # Conditionally import app modules with error handling
42
+ try:
43
+ from core.pipeline import CreativePipeline, PipelineResult
44
+ from core.stub import Stub
45
+
46
+ CORE_MODULES_AVAILABLE = True
47
+ except ImportError as e:
48
+ logger.error(f"Failed to import core modules: {str(e)}")
49
+ CORE_MODULES_AVAILABLE = False
50
+
51
+ # Get app IDs from environment with defaults
52
+ TEXT_TO_IMAGE_APP_ID = os.environ.get(
53
+ "TEXT_TO_IMAGE_APP_ID", "c25dcd829d134ea98f5ae4dd311d13bc.node3.openfabric.network"
54
+ )
55
+ IMAGE_TO_3D_APP_ID = os.environ.get(
56
+ "IMAGE_TO_3D_APP_ID", "f0b5f319156c4819b9827000b17e511a.node3.openfabric.network"
57
+ )
58
+
59
+
60
+ def main():
61
+ """AI Creative application interface"""
62
+
63
+ # Paths for saving generated content - adjust for HF Spaces environment
64
+ if RUNNING_IN_SPACES:
65
+ data_path = Path("/tmp/data")
66
+ else:
67
+ data_path = Path(__file__).parent.parent / "data"
68
+
69
+ images_path = data_path / "images"
70
+ models_path = data_path / "models"
71
+
72
+ # Ensure necessary directories exist
73
+ images_path.mkdir(exist_ok=True, parents=True)
74
+ models_path.mkdir(exist_ok=True, parents=True)
75
+
76
+ # Initialize pipeline only if modules are available
77
+ pipeline = None
78
+ if CORE_MODULES_AVAILABLE:
79
+ try:
80
+ # Configure app IDs - use both TEXT_TO_IMAGE and IMAGE_TO_3D
81
+ app_ids = []
82
+ if TEXT_TO_IMAGE_APP_ID:
83
+ app_ids.append(TEXT_TO_IMAGE_APP_ID)
84
+ if IMAGE_TO_3D_APP_ID:
85
+ app_ids.append(IMAGE_TO_3D_APP_ID)
86
+
87
+ logger.info(f"Using app IDs: {app_ids}")
88
+ stub = Stub(app_ids=app_ids)
89
+ pipeline = CreativePipeline(stub)
90
+ logger.info("Pipeline initialized successfully")
91
+ except Exception as e:
92
+ logger.error(f"Failed to initialize pipeline: {str(e)}")
93
+
94
+ def generate_from_prompt(prompt, creative_strength=0.7):
95
+ """
96
+ Generate image from text prompt - Using a simpler return format to avoid Pydantic issues
97
+ """
98
+ if not prompt:
99
+ return "Please enter a prompt", None, None, "", ""
100
+
101
+ if not pipeline:
102
+ return (
103
+ "Services not available. Please check server status.",
104
+ None,
105
+ None,
106
+ "",
107
+ "",
108
+ )
109
+
110
+ try:
111
+ # Parameters for generation
112
+ params = {
113
+ "image": {
114
+ "creative_strength": creative_strength,
115
+ },
116
+ "model": {"quality": "standard"},
117
+ }
118
+
119
+ # Update status immediately
120
+ status_msg = "Generating image from your prompt..."
121
+
122
+ # Run the creative pipeline
123
+ result = pipeline.create(prompt, params)
124
+
125
+ # Handle failed generation
126
+ if not result.success and not result.image_path:
127
+ return "Failed to generate image from prompt", None, None, "", ""
128
+
129
+ # Process successful generation
130
+ image_info = f"Original prompt: {result.original_prompt}\n"
131
+ if (
132
+ hasattr(result, "expanded_prompt")
133
+ and result.expanded_prompt
134
+ and result.expanded_prompt != result.original_prompt
135
+ ):
136
+ image_info += f"Enhanced prompt: {result.expanded_prompt}\n"
137
+
138
+ # Check for image path
139
+ image_path = result.image_path if hasattr(result, "image_path") else None
140
+
141
+ # Check for 3D model
142
+ model_path = (
143
+ result.model_path
144
+ if hasattr(result, "model_path") and result.model_path
145
+ else None
146
+ )
147
+ model_info = ""
148
+
149
+ if model_path:
150
+ model_info = f"3D model generated from image.\n"
151
+ model_info += f"Model format: {Path(model_path).suffix[1:]}"
152
+ status_msg = "Image and 3D model generated successfully!"
153
+ else:
154
+ status_msg = "Image generated successfully!"
155
+
156
+ return status_msg, image_path, model_path, image_info, model_info
157
+
158
+ except Exception as e:
159
+ logger.error(f"Generation error: {str(e)}")
160
+ return f"Error: {str(e)}", None, None, "", ""
161
+
162
+ def list_gallery_items():
163
+ """List available images in the gallery"""
164
+ images = list(images_path.glob("*.png")) + list(images_path.glob("*.jpg"))
165
+ return sorted(
166
+ [(str(img), img.stem) for img in images], key=lambda x: x[1], reverse=True
167
+ )
168
+
169
+ with gr.Blocks(title="AI Creative Studio") as demo:
170
+ gr.Markdown("# AI Creative Studio")
171
+ gr.Markdown("Generate images from text descriptions")
172
+
173
+ with gr.Tab("Create"):
174
+ with gr.Row():
175
+ with gr.Column(scale=2):
176
+ # Input area
177
+ prompt_input = gr.Textbox(
178
+ label="Your creative prompt",
179
+ placeholder="Describe what you want to create...",
180
+ lines=3,
181
+ )
182
+
183
+ with gr.Row():
184
+ creative_strength = gr.Slider(
185
+ label="Creative Strength",
186
+ minimum=0.0,
187
+ maximum=1.0,
188
+ value=0.7,
189
+ step=0.1,
190
+ )
191
+
192
+ generate_btn = gr.Button("Generate", variant="primary")
193
+ status = gr.Textbox(label="Status", interactive=False)
194
+
195
+ with gr.Column(scale=3):
196
+ # Output area with tabs for different views
197
+ with gr.Tab("Image"):
198
+ with gr.Row():
199
+ image_output = gr.Image(
200
+ label="Generated Image", type="filepath"
201
+ )
202
+ image_info = gr.Textbox(
203
+ label="Image Details", interactive=False, lines=3
204
+ )
205
+
206
+ with gr.Tab("3D Model"):
207
+ with gr.Row():
208
+ model_viewer = gr.Model3D(label="3D Model")
209
+ model_info = gr.Textbox(
210
+ label="Model Details", interactive=False, lines=3
211
+ )
212
+
213
+ with gr.Tab("Gallery"):
214
+ # Function to update the image gallery
215
+ def update_image_gallery():
216
+ images = list(images_path.glob("*.png")) + list(
217
+ images_path.glob("*.jpg")
218
+ )
219
+ return sorted(
220
+ [str(img) for img in images],
221
+ key=lambda x: os.path.getmtime(x) if os.path.exists(x) else 0,
222
+ reverse=True,
223
+ )
224
+
225
+ # Function to update the models gallery and return both the models list and model paths
226
+ def update_models_gallery():
227
+ models = list(models_path.glob("*.glb")) + list(
228
+ models_path.glob("*.gltf")
229
+ )
230
+ model_data = []
231
+ model_paths = [] # Store just the paths for easy access by index
232
+
233
+ for model_path in sorted(
234
+ models,
235
+ key=lambda x: os.path.getmtime(x) if os.path.exists(x) else 0,
236
+ reverse=True,
237
+ ):
238
+ # Try to load metadata file if available
239
+ metadata_path = model_path.with_suffix(".json")
240
+ creation_time = time.strftime(
241
+ "%Y-%m-%d %H:%M", time.localtime(os.path.getmtime(model_path))
242
+ )
243
+
244
+ if metadata_path.exists():
245
+ try:
246
+ with open(metadata_path, "r") as f:
247
+ metadata = json.load(f)
248
+ source_image = metadata.get(
249
+ "source_image_filename", "Unknown"
250
+ )
251
+ format_type = metadata.get("format", model_path.suffix[1:])
252
+ except Exception as e:
253
+ logger.error(
254
+ f"Failed to read metadata for {model_path}: {e}"
255
+ )
256
+ source_image = "Unknown"
257
+ format_type = model_path.suffix[1:]
258
+ else:
259
+ source_image = "Unknown"
260
+ format_type = model_path.suffix[1:]
261
+
262
+ # Add to data table and path list
263
+ model_paths.append(str(model_path))
264
+ model_data.append(
265
+ [
266
+ str(model_path),
267
+ source_image,
268
+ format_type,
269
+ creation_time,
270
+ ]
271
+ )
272
+
273
+ return model_data, model_paths
274
+
275
+ # Function to view model by index instead of relying on DataFrame selection
276
+ def view_model_by_index(evt: gr.SelectData):
277
+ if (
278
+ not hasattr(view_model_by_index, "model_paths")
279
+ or not view_model_by_index.model_paths
280
+ ):
281
+ logger.warning("No model paths available")
282
+ return None, None
283
+
284
+ try:
285
+ # Get the index from the selection event
286
+ row_index = (
287
+ evt.index[0] if hasattr(evt, "index") and evt.index else 0
288
+ )
289
+ if row_index < 0 or row_index >= len(
290
+ view_model_by_index.model_paths
291
+ ):
292
+ logger.warning(f"Invalid model index: {row_index}")
293
+ return None, None
294
+
295
+ # Get the model path from our saved list
296
+ model_path = view_model_by_index.model_paths[row_index]
297
+ logger.info(f"Selected model at index {row_index}: {model_path}")
298
+
299
+ if not model_path or not os.path.exists(model_path):
300
+ logger.warning(f"Model file not found: {model_path}")
301
+ return None, None
302
+
303
+ except (IndexError, AttributeError, TypeError) as e:
304
+ logger.error(f"Error accessing selected model: {e}")
305
+ return None, None
306
+
307
+ # Get model metadata if available
308
+ metadata_path = Path(model_path).with_suffix(".json")
309
+ metadata = {}
310
+
311
+ if metadata_path.exists():
312
+ try:
313
+ with open(metadata_path, "r") as f:
314
+ metadata = json.load(f)
315
+ logger.info(f"Loaded metadata for model: {model_path}")
316
+ except Exception as e:
317
+ logger.error(f"Failed to read metadata for {model_path}: {e}")
318
+ else:
319
+ logger.warning(f"No metadata file found for model: {metadata_path}")
320
+
321
+ return model_path, metadata
322
+
323
+ # Function to store model paths in the view function's namespace
324
+ def store_model_paths(model_data, model_paths):
325
+ view_model_by_index.model_paths = model_paths
326
+ return model_data
327
+
328
+ with gr.Tabs() as gallery_tabs:
329
+ with gr.Tab("Images"):
330
+ image_gallery = gr.Gallery(
331
+ label="Generated Images",
332
+ columns=4,
333
+ object_fit="contain",
334
+ height="auto",
335
+ )
336
+ refresh_img_btn = gr.Button("Refresh Images")
337
+
338
+ with gr.Tab("3D Models"):
339
+ models_list = gr.Dataframe(
340
+ headers=["Model", "Source Image", "Format", "Created"],
341
+ label="Available 3D Models",
342
+ row_count=10,
343
+ col_count=(4, "fixed"),
344
+ interactive=False,
345
+ )
346
+ with gr.Row():
347
+ selected_model = gr.Model3D(label="Selected 3D Model")
348
+ model_details = gr.JSON(label="Model Details")
349
+
350
+ refresh_models_btn = gr.Button("Refresh Models")
351
+ # Removed the "View Selected Model" button that was causing errors
352
+
353
+ # Make the dataframe selection trigger the model loading automatically
354
+ models_list.select(
355
+ fn=view_model_by_index, outputs=[selected_model, model_details]
356
+ )
357
+
358
+ # Wire up the gallery refresh buttons
359
+ refresh_img_btn.click(fn=update_image_gallery, outputs=[image_gallery])
360
+ refresh_models_btn.click(
361
+ fn=lambda: store_model_paths(*update_models_gallery()),
362
+ outputs=[models_list],
363
+ )
364
+
365
+ # Removed the view_model_btn.click implementation since we're removing the button
366
+
367
+ # Initial gallery loads
368
+ demo.load(update_image_gallery, outputs=[image_gallery])
369
+ demo.load(
370
+ fn=lambda: store_model_paths(*update_models_gallery()),
371
+ outputs=[models_list],
372
+ )
373
+
374
+ # Wire up the generate button - non-streaming mode to avoid Pydantic issues
375
+ generate_btn.click(
376
+ fn=generate_from_prompt,
377
+ inputs=[prompt_input, creative_strength],
378
+ outputs=[
379
+ status,
380
+ image_output,
381
+ model_viewer,
382
+ image_info,
383
+ model_info,
384
+ ],
385
+ )
386
+
387
+ # Initial gallery load
388
+ demo.load(update_image_gallery, outputs=[image_gallery])
389
+ demo.load(
390
+ fn=lambda: store_model_paths(*update_models_gallery()),
391
+ outputs=[models_list],
392
+ )
393
+
394
+ # Launch the UI with parameters compatible with Gradio 4.26.0
395
+ port = int(os.environ.get("UI_PORT", 7860))
396
+ logger.info(f"Launching UI on port {port}")
397
+ demo.launch(
398
+ server_name="0.0.0.0",
399
+ server_port=port,
400
+ share=True,
401
+ show_error=True,
402
+ # Removed api_mode parameter that's not supported in 4.26.0
403
+ )
404
+
405
+
406
+ if __name__ == "__main__":
407
+ main()
onto/.DS_Store ADDED
Binary file (6.15 kB). View file
 
onto/dc8f06af066e4a7880a5938933236037/.DS_Store ADDED
Binary file (8.2 kB). View file
 
onto/dc8f06af066e4a7880a5938933236037/connection/ConfigClass.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "$type" : "connection",
3
+ "schema" : "dc8f06af066e4a7880a5938933236037",
4
+ "$version" : "1.0",
5
+ "$id" : "82a958bf5a277217a679c14824974c2f",
6
+ "$author" : "andrei",
7
+ "description" : "Define connection for ConfigClass concept",
8
+ "connections" : { },
9
+ "locations" : { }
10
+ }
onto/dc8f06af066e4a7880a5938933236037/connection/InputClass.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "$type" : "connection",
3
+ "schema" : "dc8f06af066e4a7880a5938933236037",
4
+ "$version" : "1.0",
5
+ "$id" : "00f7a3dfaaa9073f029302b9fbb4191e",
6
+ "$author" : "andrei",
7
+ "description" : "Define connection for InputClass concept",
8
+ "connections" : { },
9
+ "locations" : { }
10
+ }
onto/dc8f06af066e4a7880a5938933236037/connection/OutputClass.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "$type" : "connection",
3
+ "schema" : "dc8f06af066e4a7880a5938933236037",
4
+ "$version" : "1.0",
5
+ "$id" : "523a8eb9ad1eb66ba6d1add87742cee5",
6
+ "$author" : "andrei",
7
+ "description" : "Define connection for OutputClass concept",
8
+ "connections" : { },
9
+ "locations" : { }
10
+ }
onto/dc8f06af066e4a7880a5938933236037/defaults/ConfigClass.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "$type" : "defaults",
3
+ "schema" : "dc8f06af066e4a7880a5938933236037",
4
+ "$version" : "1.0",
5
+ "$id" : "82a958bf5a277217a679c14824974c2f",
6
+ "$author" : "andrei",
7
+ "description" : "Define defaults for ConfigClass concept",
8
+ "locale" : "en_US",
9
+ "extends" : null,
10
+ "defaults" : {
11
+ "app_ids" : "None"
12
+ },
13
+ "options" : { },
14
+ "icons" : { }
15
+ }
onto/dc8f06af066e4a7880a5938933236037/defaults/InputClass.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "$type" : "defaults",
3
+ "schema" : "dc8f06af066e4a7880a5938933236037",
4
+ "$version" : "1.0",
5
+ "$id" : "00f7a3dfaaa9073f029302b9fbb4191e",
6
+ "$author" : "andrei",
7
+ "description" : "Define defaults for InputClass concept",
8
+ "locale" : "en_US",
9
+ "extends" : null,
10
+ "defaults" : {
11
+ "prompt" : "None"
12
+ },
13
+ "options" : { },
14
+ "icons" : { }
15
+ }
onto/dc8f06af066e4a7880a5938933236037/defaults/OutputClass.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "$type" : "defaults",
3
+ "schema" : "dc8f06af066e4a7880a5938933236037",
4
+ "$version" : "1.0",
5
+ "$id" : "523a8eb9ad1eb66ba6d1add87742cee5",
6
+ "$author" : "andrei",
7
+ "description" : "Define defaults for OutputClass concept",
8
+ "locale" : "en_US",
9
+ "extends" : null,
10
+ "defaults" : {
11
+ "message" : "None"
12
+ },
13
+ "options" : { },
14
+ "icons" : { }
15
+ }
onto/dc8f06af066e4a7880a5938933236037/encoding/ConfigClass.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "$type" : "encoding",
3
+ "schema" : "dc8f06af066e4a7880a5938933236037",
4
+ "$version" : "1.0",
5
+ "$id" : "82a958bf5a277217a679c14824974c2f",
6
+ "$author" : "andrei",
7
+ "description" : "Define encoding for ConfigClass concept",
8
+ "default" : "UTF-8",
9
+ "encodings" : { }
10
+ }
onto/dc8f06af066e4a7880a5938933236037/encoding/InputClass.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "$type" : "encoding",
3
+ "schema" : "dc8f06af066e4a7880a5938933236037",
4
+ "$version" : "1.0",
5
+ "$id" : "00f7a3dfaaa9073f029302b9fbb4191e",
6
+ "$author" : "andrei",
7
+ "description" : "Define encoding for InputClass concept",
8
+ "default" : "UTF-8",
9
+ "encodings" : { }
10
+ }
onto/dc8f06af066e4a7880a5938933236037/encoding/OutputClass.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "$type" : "encoding",
3
+ "schema" : "dc8f06af066e4a7880a5938933236037",
4
+ "$version" : "1.0",
5
+ "$id" : "523a8eb9ad1eb66ba6d1add87742cee5",
6
+ "$author" : "andrei",
7
+ "description" : "Define encoding for OutputClass concept",
8
+ "default" : "UTF-8",
9
+ "encodings" : { }
10
+ }
onto/dc8f06af066e4a7880a5938933236037/instruction/ConfigClass.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "$type" : "instruction",
3
+ "schema" : "dc8f06af066e4a7880a5938933236037",
4
+ "$version" : "1.0",
5
+ "$id" : "82a958bf5a277217a679c14824974c2f",
6
+ "$author" : "andrei",
7
+ "description" : "Define instruction for ConfigClass concept",
8
+ "locale" : "en_US",
9
+ "instructions" : { },
10
+ "display" : { },
11
+ "layout" : { },
12
+ "render" : null,
13
+ "renderingType" : { }
14
+ }
onto/dc8f06af066e4a7880a5938933236037/instruction/InputClass.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "$type" : "instruction",
3
+ "schema" : "dc8f06af066e4a7880a5938933236037",
4
+ "$version" : "1.0",
5
+ "$id" : "00f7a3dfaaa9073f029302b9fbb4191e",
6
+ "$author" : "andrei",
7
+ "description" : "Define instruction for InputClass concept",
8
+ "locale" : "en_US",
9
+ "instructions" : { },
10
+ "display" : { },
11
+ "layout" : { },
12
+ "render" : null,
13
+ "renderingType" : { }
14
+ }
onto/dc8f06af066e4a7880a5938933236037/instruction/OutputClass.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "$type" : "instruction",
3
+ "schema" : "dc8f06af066e4a7880a5938933236037",
4
+ "$version" : "1.0",
5
+ "$id" : "523a8eb9ad1eb66ba6d1add87742cee5",
6
+ "$author" : "andrei",
7
+ "description" : "Define instruction for OutputClass concept",
8
+ "locale" : "en_US",
9
+ "instructions" : { },
10
+ "display" : { },
11
+ "layout" : { },
12
+ "render" : null,
13
+ "renderingType" : { }
14
+ }
onto/dc8f06af066e4a7880a5938933236037/meta.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "schema" : "dc8f06af066e4a7880a5938933236037",
3
+ "$version" : "1.0",
4
+ "$author" : "andrei",
5
+ "$name" : "test-ai",
6
+ "$description" : null,
7
+ "storage" : {
8
+ "00f7a3dfaaa9073f029302b9fbb4191e" : {
9
+ "STRUCTURE" : "structure/InputClass.json",
10
+ "ENCODING" : "encoding/InputClass.json",
11
+ "SUBSET" : "subset/InputClass.json",
12
+ "RESTRICTION" : "restriction/InputClass.json",
13
+ "DEFAULTS" : "defaults/InputClass.json",
14
+ "VALIDATION" : "validation/InputClass.json",
15
+ "INSTRUCTION" : "instruction/InputClass.json",
16
+ "CONNECTION" : "connection/InputClass.json",
17
+ "NAMING" : "naming/InputClass.json"
18
+ },
19
+ "82a958bf5a277217a679c14824974c2f" : {
20
+ "STRUCTURE" : "structure/ConfigClass.json",
21
+ "ENCODING" : "encoding/ConfigClass.json",
22
+ "SUBSET" : "subset/ConfigClass.json",
23
+ "RESTRICTION" : "restriction/ConfigClass.json",
24
+ "DEFAULTS" : "defaults/ConfigClass.json",
25
+ "VALIDATION" : "validation/ConfigClass.json",
26
+ "INSTRUCTION" : "instruction/ConfigClass.json",
27
+ "CONNECTION" : "connection/ConfigClass.json",
28
+ "NAMING" : "naming/ConfigClass.json"
29
+ },
30
+ "523a8eb9ad1eb66ba6d1add87742cee5" : {
31
+ "STRUCTURE" : "structure/OutputClass.json",
32
+ "ENCODING" : "encoding/OutputClass.json",
33
+ "SUBSET" : "subset/OutputClass.json",
34
+ "RESTRICTION" : "restriction/OutputClass.json",
35
+ "DEFAULTS" : "defaults/OutputClass.json",
36
+ "VALIDATION" : "validation/OutputClass.json",
37
+ "INSTRUCTION" : "instruction/OutputClass.json",
38
+ "CONNECTION" : "connection/OutputClass.json",
39
+ "NAMING" : "naming/OutputClass.json"
40
+ }
41
+ }
42
+ }
onto/dc8f06af066e4a7880a5938933236037/naming/ConfigClass.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "$type" : "naming",
3
+ "schema" : "dc8f06af066e4a7880a5938933236037",
4
+ "$version" : "1.0",
5
+ "$id" : "82a958bf5a277217a679c14824974c2f",
6
+ "$author" : "andrei",
7
+ "description" : "Define naming for ConfigClass concept",
8
+ "locale" : "en_US",
9
+ "selfName" : null,
10
+ "names" : { },
11
+ "labels" : { }
12
+ }
onto/dc8f06af066e4a7880a5938933236037/naming/InputClass.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "$type" : "naming",
3
+ "schema" : "dc8f06af066e4a7880a5938933236037",
4
+ "$version" : "1.0",
5
+ "$id" : "00f7a3dfaaa9073f029302b9fbb4191e",
6
+ "$author" : "andrei",
7
+ "description" : "Define naming for InputClass concept",
8
+ "locale" : "en_US",
9
+ "selfName" : null,
10
+ "names" : { },
11
+ "labels" : { }
12
+ }