PrivalingoDemo / app.py
zyu
fix: resolved the issue that the input text disappears while generating translation for the first run.
3cb0c3e
raw
history blame
11.4 kB
import json
import os
import random
import re
import numpy as np
import streamlit as st
import torch
from transformers import FlaxAutoModelForSeq2SeqLM, AutoTokenizer
import logging
logger = logging.getLogger(__name__)
@st.cache_resource(show_spinner=False)
def load_model(model_name, tokenizer_name):
try:
model = FlaxAutoModelForSeq2SeqLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
except OSError as e:
st.error(f"Error loading model: {e}")
st.error(f"Model not found. Use {DEFAULT_MODEL} instead")
model_path = DEFAULT_MODEL
model = FlaxAutoModelForSeq2SeqLM.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(DEFAULT_MODEL)
except Exception as e:
st.error(f"Error loading model: {e}")
raise RuntimeError("Error loading model")
return model, tokenizer
def load_json(file_path):
with open(file_path, 'r', encoding='utf-8') as f:
data = json.load(f)
return data
def preprocess(input_text, tokenizer, src_lang, tgt_lang):
# task_prefix = f"translate {src_lang} to {tgt_lang}: "
# input_text = task_prefix + input_text
model_inputs = tokenizer(
input_text, max_length=MAX_SEQ_LEN, padding="max_length", truncation=True, return_tensors="np"
)
return model_inputs
def translate(input_text, model, tokenizer, src_lang, tgt_lang):
model_inputs = preprocess(input_text, tokenizer, src_lang, tgt_lang)
model_outputs = model.generate(**model_inputs, num_beams=NUM_BEAMS)
prediction = tokenizer.batch_decode(model_outputs.sequences, skip_special_tokens=True)
return prediction[0]
def hold_deterministic(seed):
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
random.seed(seed)
def postprocess(output_text):
output = re.sub(r"<extra_id[^>]*>", "", output_text)
return output
def display_ui():
st.set_page_config(page_title="DP-NMT DEMO", layout="wide")
st.title("Neural Machine Translation with DP-SGD")
st.write(
"[![Star](https://img.shields.io/github/stars/trusthlt/dp-nmt.svg?logo=github&style=social)](https://github.com/trusthlt/dp-nmt)"
"&nbsp;&nbsp;&nbsp;"
"[![ACL](https://img.shields.io/badge/ACL-Link-red.svg?logo=&link=https%3A%2F%2Faclanthology.org%2F2024.eacl-demo.11%2F)](https://aclanthology.org/2024.eacl-demo.11/)"
)
st.write("This is a demo for private neural machine translation with DP-SGD.")
left, right = st.columns(2)
return left, right
def load_selected_model(config, dataset, language_pair, epsilon):
ckpt = config[dataset]['languages pairs'][language_pair]['epsilon'][str(epsilon)]
logger.info(f"Loading model from {ckpt}")
if "privalingo" in ckpt:
model_path = ckpt # load model from huggingface hub
else:
model_name = DEFAULT_MODEL.split('/')[-1]
model_path = os.path.join(CHECKPOINTS_DIR, ckpt, model_name)
if not os.path.exists(model_path):
st.error(f"Model not found. Using default model: {DEFAULT_MODEL}")
model_path = DEFAULT_MODEL
return model_path
def init_session_state():
if 'model_state' not in st.session_state:
st.session_state.model_state = {
'loaded': False,
'current_config': None
}
if 'translate_in_progress' not in st.session_state:
st.session_state.translate_in_progress = False
if "load_model_in_progress" not in st.session_state:
st.session_state.load_model_in_progress = False
if "select_model_button" in st.session_state and st.session_state.select_model_button == True:
st.session_state.load_model_in_progress = True
if 'translate_button' in st.session_state and st.session_state.translate_button == True:
st.session_state.translate_in_progress = True
if 'translation_result' not in st.session_state:
st.session_state.translation_result = {
'input': None,
'output': None
}
def get_translation_result():
if "translation_result" in st.session_state and st.session_state.translation_result['input'] is not None:
input_text_content = st.session_state.translation_result['input']
else:
input_text_content = "Enter Text Here"
if "translation_result" in st.session_state and st.session_state.translation_result['output'] is not None:
output_text_content = st.session_state.translation_result['output']
else:
output_text_content = None
return input_text_content, output_text_content
def set_input_text_content():
if 'input_text' in st.session_state:
st.session_state.translation_result['input'] = st.session_state.input_text
def main():
hold_deterministic(SEED)
config = load_json(DATASETS_MODEL_INFO_PATH)
left, right = display_ui()
init_session_state()
with right:
right_placeholder = st.empty()
if st.session_state.load_model_in_progress:
# Placeholder for right column, to display the input text area and translation result. If do not overwrite the
# right column from previous run, the translate button and input text area will be available for user to interace
# during the loading of model.
disable = True
with right_placeholder.container():
input_text_content, output_text_content = get_translation_result()
input_text = st.text_area("Enter Text", input_text_content, max_chars=MAX_INPUT_LEN, disabled=disable)
msg_model = "Please confirm model selection via the \'Select Model\' Button first!" \
if st.session_state.model_state['current_config'] is None \
else f"Current Model: {st.session_state.model_state['current_config']}"
st.write(msg_model)
btn_translate = st.button("Translate",
disabled=disable,
use_container_width=True,
key="translate_button")
with left:
disable = st.session_state.translate_in_progress or st.session_state.load_model_in_progress
dataset = st.selectbox("Choose a dataset used for fine-tuning", list(DATASETS_MODEL_INFO.keys()), disabled=disable)
language_pairs_list = list(DATASETS_MODEL_INFO[dataset]["languages pairs"].keys())
language_pair = st.selectbox("Language pair for translation", language_pairs_list, disabled=disable)
src_lang, tgt_lang = language_pair.split("-")
epsilon_options = list(DATASETS_MODEL_INFO[dataset]['languages pairs'][language_pair]['epsilon'].keys())
epsilon = st.radio("Select a privacy budget epsilon", epsilon_options, horizontal=True, disabled=disable)
btn_select_model = st.button(
"Select Model",
disabled=disable,
use_container_width=True,
key="select_model_button")
model_status_box = st.empty()
# Load model to cache, if the user has selected a model for the first time
if btn_select_model:
st.session_state.load_model_in_progress = True
current_config = f"{dataset}_{language_pair}_{epsilon}"
st.session_state.model_state['loaded'] = False
model_status_box.write("")
with st.spinner(f'Loading model trained on {dataset} with epsilon {epsilon}...'):
model_path = load_selected_model(config, dataset, language_pair, epsilon)
model, tokenizer = load_model(model_path, tokenizer_name=DEFAULT_MODEL)
model_status_box.success('Model loaded!')
st.session_state.model_state['current_config'] = current_config
st.session_state.load_model_in_progress = False
st.rerun()
with right_placeholder.container():
disable = st.session_state.load_model_in_progress or st.session_state.translate_in_progress
input_text_content, output_text_content = get_translation_result()
input_text = st.text_area(
"Enter Text",
input_text_content,
max_chars=MAX_INPUT_LEN,
disabled=disable,
key="input_text",
on_change=set_input_text_content,
)
msg_model = "Please confirm model selection via the \'Select Model\' Button first!" \
if st.session_state.model_state['current_config'] is None \
else f"Current Model: {st.session_state.model_state['current_config']}"
st.write(msg_model)
btn_translate = st.button("Translate",
disabled=(disable or st.session_state.translate_in_progress),
use_container_width=True,
key="translate_button")
result_container = st.empty()
if output_text_content is not None and not st.session_state.translate_in_progress:
with result_container.container():
st.write("**Translation:**")
output_container = result_container.container(border=True)
output_container.write("".join([postprocess(output_text_content)]))
# Load model from cache when click translate button, if the user has selected a model previously
if not st.session_state.select_model_button and st.session_state.translate_button:
model_config = st.session_state.model_state['current_config']
if model_config is None:
# If the user click translate button without selecting a model, set st.session_state.translate_in_progress to False,
# to avoid death of program and then refresh the page
st.session_state.translate_in_progress = False
st.rerun()
dataset, language_pair, epsilon = model_config.split("_")
model_path = load_selected_model(config, dataset, language_pair, epsilon)
model, tokenizer = load_model(model_path, tokenizer_name=DEFAULT_MODEL)
st.session_state.model_state['loaded'] = True
if btn_translate:
st.session_state.translate_in_progress = True
with right:
with st.spinner("Translating..."):
prediction = translate(input_text, model, tokenizer, src_lang, tgt_lang)
st.session_state.translation_result['input'] = input_text
st.session_state.translation_result['output'] = prediction
st.session_state.translate_in_progress = False
st.rerun()
if __name__ == '__main__':
DATASETS_MODEL_INFO_PATH = os.path.join(os.getcwd(), "dataset_and_model_info.json")
logger.info(DATASETS_MODEL_INFO_PATH)
DATASETS_MODEL_INFO = load_json(DATASETS_MODEL_INFO_PATH)
DEFAULT_MODEL = 'google/mt5-small'
MAX_SEQ_LEN = 512
NUM_BEAMS = 3
SEED = 2023
MAX_INPUT_LEN = 500
main()