Spaces:
Sleeping
Sleeping
File size: 11,402 Bytes
10a832a cb7cdd4 10a832a 03fbdf1 10a832a 700acd6 10a832a 499a604 03fbdf1 499a604 03fbdf1 10a832a cb7cdd4 10a832a 93d0613 cb7cdd4 10a832a cb7cdd4 10a832a cb7cdd4 93d0613 03fbdf1 93d0613 03fbdf1 3266b95 03fbdf1 3266b95 3cb0c3e 93d0613 c7c367c 93d0613 03fbdf1 3266b95 cb7cdd4 3266b95 cb7cdd4 3266b95 cb7cdd4 3266b95 93d0613 cb7cdd4 03fbdf1 3266b95 03fbdf1 cb7cdd4 03fbdf1 93d0613 cb7cdd4 03fbdf1 cb7cdd4 93d0613 cb7cdd4 3266b95 03fbdf1 3266b95 03fbdf1 3cb0c3e 03fbdf1 3266b95 03fbdf1 3266b95 03fbdf1 3266b95 03fbdf1 3266b95 03fbdf1 3266b95 03fbdf1 cb7cdd4 03fbdf1 10a832a ce4c2ae 3eacb4c ce4c2ae 10a832a ce4c2ae cb7cdd4 ce4c2ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import json
import os
import random
import re
import numpy as np
import streamlit as st
import torch
from transformers import FlaxAutoModelForSeq2SeqLM, AutoTokenizer
import logging
logger = logging.getLogger(__name__)
@st.cache_resource(show_spinner=False)
def load_model(model_name, tokenizer_name):
try:
model = FlaxAutoModelForSeq2SeqLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
except OSError as e:
st.error(f"Error loading model: {e}")
st.error(f"Model not found. Use {DEFAULT_MODEL} instead")
model_path = DEFAULT_MODEL
model = FlaxAutoModelForSeq2SeqLM.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(DEFAULT_MODEL)
except Exception as e:
st.error(f"Error loading model: {e}")
raise RuntimeError("Error loading model")
return model, tokenizer
def load_json(file_path):
with open(file_path, 'r', encoding='utf-8') as f:
data = json.load(f)
return data
def preprocess(input_text, tokenizer, src_lang, tgt_lang):
# task_prefix = f"translate {src_lang} to {tgt_lang}: "
# input_text = task_prefix + input_text
model_inputs = tokenizer(
input_text, max_length=MAX_SEQ_LEN, padding="max_length", truncation=True, return_tensors="np"
)
return model_inputs
def translate(input_text, model, tokenizer, src_lang, tgt_lang):
model_inputs = preprocess(input_text, tokenizer, src_lang, tgt_lang)
model_outputs = model.generate(**model_inputs, num_beams=NUM_BEAMS)
prediction = tokenizer.batch_decode(model_outputs.sequences, skip_special_tokens=True)
return prediction[0]
def hold_deterministic(seed):
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
random.seed(seed)
def postprocess(output_text):
output = re.sub(r"<extra_id[^>]*>", "", output_text)
return output
def display_ui():
st.set_page_config(page_title="DP-NMT DEMO", layout="wide")
st.title("Neural Machine Translation with DP-SGD")
st.write(
"[](https://github.com/trusthlt/dp-nmt)"
" "
"[](https://aclanthology.org/2024.eacl-demo.11/)"
)
st.write("This is a demo for private neural machine translation with DP-SGD.")
left, right = st.columns(2)
return left, right
def load_selected_model(config, dataset, language_pair, epsilon):
ckpt = config[dataset]['languages pairs'][language_pair]['epsilon'][str(epsilon)]
logger.info(f"Loading model from {ckpt}")
if "privalingo" in ckpt:
model_path = ckpt # load model from huggingface hub
else:
model_name = DEFAULT_MODEL.split('/')[-1]
model_path = os.path.join(CHECKPOINTS_DIR, ckpt, model_name)
if not os.path.exists(model_path):
st.error(f"Model not found. Using default model: {DEFAULT_MODEL}")
model_path = DEFAULT_MODEL
return model_path
def init_session_state():
if 'model_state' not in st.session_state:
st.session_state.model_state = {
'loaded': False,
'current_config': None
}
if 'translate_in_progress' not in st.session_state:
st.session_state.translate_in_progress = False
if "load_model_in_progress" not in st.session_state:
st.session_state.load_model_in_progress = False
if "select_model_button" in st.session_state and st.session_state.select_model_button == True:
st.session_state.load_model_in_progress = True
if 'translate_button' in st.session_state and st.session_state.translate_button == True:
st.session_state.translate_in_progress = True
if 'translation_result' not in st.session_state:
st.session_state.translation_result = {
'input': None,
'output': None
}
def get_translation_result():
if "translation_result" in st.session_state and st.session_state.translation_result['input'] is not None:
input_text_content = st.session_state.translation_result['input']
else:
input_text_content = "Enter Text Here"
if "translation_result" in st.session_state and st.session_state.translation_result['output'] is not None:
output_text_content = st.session_state.translation_result['output']
else:
output_text_content = None
return input_text_content, output_text_content
def set_input_text_content():
if 'input_text' in st.session_state:
st.session_state.translation_result['input'] = st.session_state.input_text
def main():
hold_deterministic(SEED)
config = load_json(DATASETS_MODEL_INFO_PATH)
left, right = display_ui()
init_session_state()
with right:
right_placeholder = st.empty()
if st.session_state.load_model_in_progress:
# Placeholder for right column, to display the input text area and translation result. If do not overwrite the
# right column from previous run, the translate button and input text area will be available for user to interace
# during the loading of model.
disable = True
with right_placeholder.container():
input_text_content, output_text_content = get_translation_result()
input_text = st.text_area("Enter Text", input_text_content, max_chars=MAX_INPUT_LEN, disabled=disable)
msg_model = "Please confirm model selection via the \'Select Model\' Button first!" \
if st.session_state.model_state['current_config'] is None \
else f"Current Model: {st.session_state.model_state['current_config']}"
st.write(msg_model)
btn_translate = st.button("Translate",
disabled=disable,
use_container_width=True,
key="translate_button")
with left:
disable = st.session_state.translate_in_progress or st.session_state.load_model_in_progress
dataset = st.selectbox("Choose a dataset used for fine-tuning", list(DATASETS_MODEL_INFO.keys()), disabled=disable)
language_pairs_list = list(DATASETS_MODEL_INFO[dataset]["languages pairs"].keys())
language_pair = st.selectbox("Language pair for translation", language_pairs_list, disabled=disable)
src_lang, tgt_lang = language_pair.split("-")
epsilon_options = list(DATASETS_MODEL_INFO[dataset]['languages pairs'][language_pair]['epsilon'].keys())
epsilon = st.radio("Select a privacy budget epsilon", epsilon_options, horizontal=True, disabled=disable)
btn_select_model = st.button(
"Select Model",
disabled=disable,
use_container_width=True,
key="select_model_button")
model_status_box = st.empty()
# Load model to cache, if the user has selected a model for the first time
if btn_select_model:
st.session_state.load_model_in_progress = True
current_config = f"{dataset}_{language_pair}_{epsilon}"
st.session_state.model_state['loaded'] = False
model_status_box.write("")
with st.spinner(f'Loading model trained on {dataset} with epsilon {epsilon}...'):
model_path = load_selected_model(config, dataset, language_pair, epsilon)
model, tokenizer = load_model(model_path, tokenizer_name=DEFAULT_MODEL)
model_status_box.success('Model loaded!')
st.session_state.model_state['current_config'] = current_config
st.session_state.load_model_in_progress = False
st.rerun()
with right_placeholder.container():
disable = st.session_state.load_model_in_progress or st.session_state.translate_in_progress
input_text_content, output_text_content = get_translation_result()
input_text = st.text_area(
"Enter Text",
input_text_content,
max_chars=MAX_INPUT_LEN,
disabled=disable,
key="input_text",
on_change=set_input_text_content,
)
msg_model = "Please confirm model selection via the \'Select Model\' Button first!" \
if st.session_state.model_state['current_config'] is None \
else f"Current Model: {st.session_state.model_state['current_config']}"
st.write(msg_model)
btn_translate = st.button("Translate",
disabled=(disable or st.session_state.translate_in_progress),
use_container_width=True,
key="translate_button")
result_container = st.empty()
if output_text_content is not None and not st.session_state.translate_in_progress:
with result_container.container():
st.write("**Translation:**")
output_container = result_container.container(border=True)
output_container.write("".join([postprocess(output_text_content)]))
# Load model from cache when click translate button, if the user has selected a model previously
if not st.session_state.select_model_button and st.session_state.translate_button:
model_config = st.session_state.model_state['current_config']
if model_config is None:
# If the user click translate button without selecting a model, set st.session_state.translate_in_progress to False,
# to avoid death of program and then refresh the page
st.session_state.translate_in_progress = False
st.rerun()
dataset, language_pair, epsilon = model_config.split("_")
model_path = load_selected_model(config, dataset, language_pair, epsilon)
model, tokenizer = load_model(model_path, tokenizer_name=DEFAULT_MODEL)
st.session_state.model_state['loaded'] = True
if btn_translate:
st.session_state.translate_in_progress = True
with right:
with st.spinner("Translating..."):
prediction = translate(input_text, model, tokenizer, src_lang, tgt_lang)
st.session_state.translation_result['input'] = input_text
st.session_state.translation_result['output'] = prediction
st.session_state.translate_in_progress = False
st.rerun()
if __name__ == '__main__':
DATASETS_MODEL_INFO_PATH = os.path.join(os.getcwd(), "dataset_and_model_info.json")
logger.info(DATASETS_MODEL_INFO_PATH)
DATASETS_MODEL_INFO = load_json(DATASETS_MODEL_INFO_PATH)
DEFAULT_MODEL = 'google/mt5-small'
MAX_SEQ_LEN = 512
NUM_BEAMS = 3
SEED = 2023
MAX_INPUT_LEN = 500
main()
|