File size: 11,402 Bytes
10a832a
 
 
cb7cdd4
10a832a
 
 
 
 
03fbdf1
 
 
10a832a
 
700acd6
10a832a
499a604
 
 
03fbdf1
499a604
 
 
 
 
03fbdf1
 
 
10a832a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb7cdd4
 
 
10a832a
 
93d0613
cb7cdd4
 
10a832a
cb7cdd4
 
 
 
 
10a832a
cb7cdd4
 
 
93d0613
 
 
 
 
03fbdf1
93d0613
 
 
 
 
 
 
 
 
 
 
03fbdf1
 
 
 
 
 
 
 
 
 
3266b95
 
 
 
 
 
03fbdf1
 
 
 
 
 
 
 
 
3266b95
 
 
 
 
 
 
 
 
 
 
 
 
 
3cb0c3e
 
 
 
 
93d0613
 
c7c367c
93d0613
 
 
03fbdf1
 
3266b95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb7cdd4
3266b95
 
cb7cdd4
3266b95
cb7cdd4
 
3266b95
 
 
 
 
 
93d0613
cb7cdd4
03fbdf1
 
3266b95
03fbdf1
cb7cdd4
03fbdf1
93d0613
cb7cdd4
03fbdf1
cb7cdd4
93d0613
cb7cdd4
3266b95
 
 
03fbdf1
3266b95
 
 
03fbdf1
3cb0c3e
 
 
 
 
 
 
 
03fbdf1
 
3266b95
 
03fbdf1
 
 
 
3266b95
03fbdf1
 
 
 
 
3266b95
 
 
 
03fbdf1
 
 
 
3266b95
 
 
 
 
 
 
03fbdf1
 
 
 
 
3266b95
03fbdf1
cb7cdd4
 
 
03fbdf1
 
 
 
 
 
10a832a
 
ce4c2ae
 
3eacb4c
ce4c2ae
 
10a832a
ce4c2ae
 
 
cb7cdd4
ce4c2ae
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import json
import os
import random
import re

import numpy as np
import streamlit as st
import torch
from transformers import FlaxAutoModelForSeq2SeqLM, AutoTokenizer
import logging

logger = logging.getLogger(__name__)


@st.cache_resource(show_spinner=False)
def load_model(model_name, tokenizer_name):
    try:
        model = FlaxAutoModelForSeq2SeqLM.from_pretrained(model_name)
        tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
    except OSError as e:
        st.error(f"Error loading model: {e}")
        st.error(f"Model not found. Use {DEFAULT_MODEL} instead")
        model_path = DEFAULT_MODEL
        model = FlaxAutoModelForSeq2SeqLM.from_pretrained(model_path)
        tokenizer = AutoTokenizer.from_pretrained(DEFAULT_MODEL)
    except Exception as e:
        st.error(f"Error loading model: {e}")
        raise RuntimeError("Error loading model")
    return model, tokenizer


def load_json(file_path):
    with open(file_path, 'r', encoding='utf-8') as f:
        data = json.load(f)
    return data


def preprocess(input_text, tokenizer, src_lang, tgt_lang):
    # task_prefix = f"translate {src_lang} to {tgt_lang}: "
    # input_text = task_prefix + input_text
    model_inputs = tokenizer(
        input_text, max_length=MAX_SEQ_LEN, padding="max_length", truncation=True, return_tensors="np"
    )
    return model_inputs


def translate(input_text, model, tokenizer, src_lang, tgt_lang):
    model_inputs = preprocess(input_text, tokenizer, src_lang, tgt_lang)
    model_outputs = model.generate(**model_inputs, num_beams=NUM_BEAMS)
    prediction = tokenizer.batch_decode(model_outputs.sequences, skip_special_tokens=True)
    return prediction[0]


def hold_deterministic(seed):
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    random.seed(seed)


def postprocess(output_text):
    output = re.sub(r"<extra_id[^>]*>", "", output_text)
    return output


def display_ui():
    st.set_page_config(page_title="DP-NMT DEMO", layout="wide")
    st.title("Neural Machine Translation with DP-SGD")

    st.write(
        "[![Star](https://img.shields.io/github/stars/trusthlt/dp-nmt.svg?logo=github&style=social)](https://github.com/trusthlt/dp-nmt)"
        "&nbsp;&nbsp;&nbsp;"
        "[![ACL](https://img.shields.io/badge/ACL-Link-red.svg?logo=&link=https%3A%2F%2Faclanthology.org%2F2024.eacl-demo.11%2F)](https://aclanthology.org/2024.eacl-demo.11/)"
    )

    st.write("This is a demo for private neural machine translation with DP-SGD.")

    left, right = st.columns(2)
    return left, right


def load_selected_model(config, dataset, language_pair, epsilon):
    ckpt = config[dataset]['languages pairs'][language_pair]['epsilon'][str(epsilon)]
    logger.info(f"Loading model from {ckpt}")
    if "privalingo" in ckpt:
        model_path = ckpt  # load model from huggingface hub
    else:
        model_name = DEFAULT_MODEL.split('/')[-1]
        model_path = os.path.join(CHECKPOINTS_DIR, ckpt, model_name)
        if not os.path.exists(model_path):
            st.error(f"Model not found. Using default model: {DEFAULT_MODEL}")
            model_path = DEFAULT_MODEL
    return model_path


def init_session_state():
    if 'model_state' not in st.session_state:
        st.session_state.model_state = {
            'loaded': False,
            'current_config': None
        }

    if 'translate_in_progress' not in st.session_state:
        st.session_state.translate_in_progress = False

    if "load_model_in_progress" not in st.session_state:
        st.session_state.load_model_in_progress = False

    if "select_model_button" in st.session_state and st.session_state.select_model_button == True:
        st.session_state.load_model_in_progress = True

    if 'translate_button' in st.session_state and st.session_state.translate_button == True:
        st.session_state.translate_in_progress = True

    if 'translation_result' not in st.session_state:
        st.session_state.translation_result = {
            'input': None,
            'output': None
        }


def get_translation_result():
    if "translation_result" in st.session_state and st.session_state.translation_result['input'] is not None:
        input_text_content = st.session_state.translation_result['input']
    else:
        input_text_content = "Enter Text Here"

    if "translation_result" in st.session_state and st.session_state.translation_result['output'] is not None:
        output_text_content = st.session_state.translation_result['output']
    else:
        output_text_content = None
    return input_text_content, output_text_content


def set_input_text_content():
    if 'input_text' in st.session_state:
        st.session_state.translation_result['input'] = st.session_state.input_text


def main():
    hold_deterministic(SEED)
    config = load_json(DATASETS_MODEL_INFO_PATH)

    left, right = display_ui()

    init_session_state()

    with right:
        right_placeholder = st.empty()

    if st.session_state.load_model_in_progress:

        # Placeholder for right column, to display the input text area and translation result. If do not overwrite the
        # right column from previous run, the translate button and input text area will be available for user to interace
        # during the loading of model.
        disable = True
        with right_placeholder.container():
            input_text_content, output_text_content = get_translation_result()
            input_text = st.text_area("Enter Text", input_text_content, max_chars=MAX_INPUT_LEN, disabled=disable)

            msg_model = "Please confirm model selection via the \'Select Model\' Button first!" \
                if st.session_state.model_state['current_config'] is None \
                else f"Current Model: {st.session_state.model_state['current_config']}"

            st.write(msg_model)

            btn_translate = st.button("Translate",
                                      disabled=disable,
                                      use_container_width=True,
                                      key="translate_button")


    with left:
        disable = st.session_state.translate_in_progress or st.session_state.load_model_in_progress
        dataset = st.selectbox("Choose a dataset used for fine-tuning", list(DATASETS_MODEL_INFO.keys()), disabled=disable)
        language_pairs_list = list(DATASETS_MODEL_INFO[dataset]["languages pairs"].keys())
        language_pair = st.selectbox("Language pair for translation", language_pairs_list, disabled=disable)
        src_lang, tgt_lang = language_pair.split("-")
        epsilon_options = list(DATASETS_MODEL_INFO[dataset]['languages pairs'][language_pair]['epsilon'].keys())
        epsilon = st.radio("Select a privacy budget epsilon", epsilon_options, horizontal=True, disabled=disable)
        btn_select_model = st.button(
            "Select Model",
            disabled=disable,
            use_container_width=True,
            key="select_model_button")
        model_status_box = st.empty()

    # Load model to cache, if the user has selected a model for the first time
    if btn_select_model:
        st.session_state.load_model_in_progress = True
        current_config = f"{dataset}_{language_pair}_{epsilon}"

        st.session_state.model_state['loaded'] = False
        model_status_box.write("")
        with st.spinner(f'Loading model trained on {dataset} with epsilon {epsilon}...'):
            model_path = load_selected_model(config, dataset, language_pair, epsilon)
            model, tokenizer = load_model(model_path, tokenizer_name=DEFAULT_MODEL)
        model_status_box.success('Model loaded!')

        st.session_state.model_state['current_config'] = current_config
        st.session_state.load_model_in_progress = False
        st.rerun()

    with right_placeholder.container():
        disable = st.session_state.load_model_in_progress or st.session_state.translate_in_progress
        input_text_content, output_text_content = get_translation_result()

        input_text = st.text_area(
            "Enter Text",
            input_text_content,
            max_chars=MAX_INPUT_LEN,
            disabled=disable,
            key="input_text",
            on_change=set_input_text_content,
        )

        msg_model = "Please confirm model selection via the \'Select Model\' Button first!" \
                    if st.session_state.model_state['current_config'] is None \
                    else f"Current Model: {st.session_state.model_state['current_config']}"

        st.write(msg_model)

        btn_translate = st.button("Translate",
                                  disabled=(disable or st.session_state.translate_in_progress),
                                  use_container_width=True,
                                  key="translate_button")
        result_container = st.empty()

        if output_text_content is not None and not st.session_state.translate_in_progress:
            with result_container.container():
                st.write("**Translation:**")
                output_container = result_container.container(border=True)
                output_container.write("".join([postprocess(output_text_content)]))

    # Load model from cache when click translate button, if the user has selected a model previously
    if not st.session_state.select_model_button and st.session_state.translate_button:
        model_config = st.session_state.model_state['current_config']
        if model_config is None:

            # If the user click translate button without selecting a model, set st.session_state.translate_in_progress to False,
            # to avoid death of program and then refresh the page
            st.session_state.translate_in_progress = False
            st.rerun()

        dataset, language_pair, epsilon = model_config.split("_")
        model_path = load_selected_model(config, dataset, language_pair, epsilon)
        model, tokenizer = load_model(model_path, tokenizer_name=DEFAULT_MODEL)
        st.session_state.model_state['loaded'] = True

    if btn_translate:
        st.session_state.translate_in_progress = True
        with right:
            with st.spinner("Translating..."):
                prediction = translate(input_text, model, tokenizer, src_lang, tgt_lang)

            st.session_state.translation_result['input'] = input_text
            st.session_state.translation_result['output'] = prediction

        st.session_state.translate_in_progress = False
        st.rerun()


if __name__ == '__main__':
    DATASETS_MODEL_INFO_PATH = os.path.join(os.getcwd(), "dataset_and_model_info.json")
    logger.info(DATASETS_MODEL_INFO_PATH)
    DATASETS_MODEL_INFO = load_json(DATASETS_MODEL_INFO_PATH)
    DEFAULT_MODEL = 'google/mt5-small'

    MAX_SEQ_LEN = 512
    NUM_BEAMS = 3
    SEED = 2023
    MAX_INPUT_LEN = 500
    main()