Spaces:
Sleeping
Sleeping
Zhuo
commited on
Commit
·
10a832a
1
Parent(s):
31b8a7b
init app
Browse files- app.py +103 -0
- dataset_and_model_info.json +37 -0
app.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import streamlit as st
|
7 |
+
import torch
|
8 |
+
from transformers import FlaxAutoModelForSeq2SeqLM, AutoTokenizer
|
9 |
+
|
10 |
+
|
11 |
+
@st.cache_resource
|
12 |
+
def load_model(model_name, tokenizer_name):
|
13 |
+
model = FlaxAutoModelForSeq2SeqLM.from_pretrained(model_name)
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
|
15 |
+
return model, tokenizer
|
16 |
+
|
17 |
+
|
18 |
+
def load_json(file_path):
|
19 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
20 |
+
data = json.load(f)
|
21 |
+
return data
|
22 |
+
|
23 |
+
|
24 |
+
def preprocess(input_text, tokenizer, src_lang, tgt_lang):
|
25 |
+
# task_prefix = f"translate {src_lang} to {tgt_lang}: "
|
26 |
+
# input_text = task_prefix + input_text
|
27 |
+
model_inputs = tokenizer(
|
28 |
+
input_text, max_length=MAX_SEQ_LEN, padding="max_length", truncation=True, return_tensors="np"
|
29 |
+
)
|
30 |
+
return model_inputs
|
31 |
+
|
32 |
+
|
33 |
+
def translate(input_text, model, tokenizer, src_lang, tgt_lang):
|
34 |
+
model_inputs = preprocess(input_text, tokenizer, src_lang, tgt_lang)
|
35 |
+
model_outputs = model.generate(**model_inputs, num_beams=NUM_BEAMS)
|
36 |
+
prediction = tokenizer.batch_decode(model_outputs.sequences, skip_special_tokens=True)
|
37 |
+
return prediction[0]
|
38 |
+
|
39 |
+
|
40 |
+
def hold_deterministic(seed):
|
41 |
+
np.random.seed(seed)
|
42 |
+
torch.manual_seed(seed)
|
43 |
+
torch.cuda.manual_seed(seed)
|
44 |
+
random.seed(seed)
|
45 |
+
|
46 |
+
|
47 |
+
def main():
|
48 |
+
# st.title("Privalingo Playground Demo")
|
49 |
+
# html_temp = """
|
50 |
+
# <div style="background:#025246 ;padding:10px">
|
51 |
+
# <h2 style="color:white;text-align:center;">Playground Demo </h2>
|
52 |
+
# </div>
|
53 |
+
# """
|
54 |
+
# st.markdown(html_temp, unsafe_allow_html=True)
|
55 |
+
hold_deterministic(SEED)
|
56 |
+
|
57 |
+
st.title("Neural Machine Translation with DP-SGD")
|
58 |
+
|
59 |
+
st.write("This is a demo for private neural machine translation with DP-SGD. More detail can be found in the [repository](https://github.com/trusthlt/dp-nmt)")
|
60 |
+
|
61 |
+
dataset = st.selectbox("Choose a dataset used for fine-tuning", list(DATASETS_MODEL_INFO.keys()))
|
62 |
+
|
63 |
+
language_pairs_list = list(DATASETS_MODEL_INFO[dataset]["languages pairs"].keys())
|
64 |
+
|
65 |
+
language_pair = st.selectbox("Language pair for translation", language_pairs_list)
|
66 |
+
|
67 |
+
src_lang, tgt_lang = language_pair.split("-")
|
68 |
+
|
69 |
+
epsilon_options = list(DATASETS_MODEL_INFO[dataset]['languages pairs'][language_pair]['epsilon'].keys())
|
70 |
+
epsilon = st.radio("Select a privacy budget epsilon", epsilon_options)
|
71 |
+
|
72 |
+
st_model_load = st.text(f'Loading model trained on {dataset} with epsilon {epsilon}...')
|
73 |
+
|
74 |
+
ckpt = DATASETS_MODEL_INFO[dataset]['languages pairs'][language_pair]['epsilon'][str(epsilon)]
|
75 |
+
model_name = MODEL.split('/')[-1]
|
76 |
+
model_path = os.path.join(CHECKPOINTS_DIR, ckpt, model_name)
|
77 |
+
|
78 |
+
if not os.path.exists(model_path):
|
79 |
+
st.error(f"Model not found. Use {MODEL} instead")
|
80 |
+
model_path = MODEL
|
81 |
+
|
82 |
+
model, tokenizer = load_model(model_path, tokenizer_name=MODEL)
|
83 |
+
st.success('Model loaded!')
|
84 |
+
st_model_load.text("")
|
85 |
+
|
86 |
+
input_text = st.text_area("Enter Text", "Enter Text Here", max_chars=200)
|
87 |
+
|
88 |
+
if st.button("Translate"):
|
89 |
+
st.write("Translation")
|
90 |
+
prediction = translate(input_text, model, tokenizer, src_lang, tgt_lang)
|
91 |
+
st.success("".join([prediction]))
|
92 |
+
|
93 |
+
|
94 |
+
if __name__ == '__main__':
|
95 |
+
DATASETS_MODEL_INFO_PATH = os.getcwd() + "/app/dataset_and_model_info.json"
|
96 |
+
CHECKPOINTS_DIR = os.getcwd() + "/checkpoints"
|
97 |
+
DATASETS_MODEL_INFO = load_json(DATASETS_MODEL_INFO_PATH)
|
98 |
+
MODEL = 'google/mt5-small'
|
99 |
+
|
100 |
+
MAX_SEQ_LEN = 512
|
101 |
+
NUM_BEAMS = 3
|
102 |
+
SEED = 2023
|
103 |
+
main()
|
dataset_and_model_info.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"WMT": {
|
3 |
+
"languages pairs": {
|
4 |
+
"German-English": {
|
5 |
+
"epsilon": {
|
6 |
+
"1": "2023_10_07-05_50_17",
|
7 |
+
"5": "2023_10_07-16_40_49",
|
8 |
+
"non": "2023_11_24-20_58_27"
|
9 |
+
}
|
10 |
+
}
|
11 |
+
}
|
12 |
+
},
|
13 |
+
"BSD": {
|
14 |
+
"languages pairs": {
|
15 |
+
"Japanese-English": {
|
16 |
+
"epsilon": {
|
17 |
+
"1": "2023_09_04-15_54_22",
|
18 |
+
"2": "2023_09_04-16_23_41",
|
19 |
+
"5": "2023_09_04-16_51_06",
|
20 |
+
"10": "2023_09_04-17_17_44",
|
21 |
+
"non": "2023_10_22-19_08_23"
|
22 |
+
}
|
23 |
+
}
|
24 |
+
}
|
25 |
+
},
|
26 |
+
"ClinSpEn-CC": {
|
27 |
+
"languages pairs": {
|
28 |
+
"Spanish-English": {
|
29 |
+
"epsilon": {
|
30 |
+
"1": "2023_10_01-00_38_27",
|
31 |
+
"5": "2023_10_01-01_11_49",
|
32 |
+
"non": "2023_10_23-15_46_22"
|
33 |
+
}
|
34 |
+
}
|
35 |
+
}
|
36 |
+
}
|
37 |
+
}
|