Spaces:
Sleeping
Sleeping
File size: 6,433 Bytes
3378b23 4dd424d 550e87b be06203 6a2d3ac c3b9b9a 4bcb630 5ac52b0 4dd424d 27a479a 1c516fb 4dd424d be06203 1c516fb c3b9b9a 7b594ac 6a2d3ac 83ed4d1 6a2d3ac 4bcb630 c3b9b9a 1bf2e1f c3b9b9a 4bcb630 83ed4d1 c3b9b9a 4bcb630 c3b9b9a 6a2d3ac c3b9b9a 6a2d3ac c3b9b9a f6c85ec c89ea47 f6c85ec c3b9b9a c89ea47 6a2d3ac b8c8744 41b589c 0802dfc f060825 0802dfc 41b589c 0802dfc b8c8744 0802dfc f419f72 6a2d3ac b8c8744 dca80da 3560824 6a2d3ac dca80da 7b594ac f060825 7b594ac 41b589c 7b594ac 6a2d3ac dca80da d5e3908 3560824 7b594ac 7f82f4e 7b594ac 6a2d3ac 7b594ac 6a2d3ac 7b594ac c885074 7b594ac b8c8744 3378b23 402cfa6 3378b23 e4efa7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import json
import os
import streamlit as st
import streamlit.components.v1 as components
from langchain.callbacks import get_openai_callback
from langchain.chains import ConversationalRetrievalChain
from langchain.chains.conversation.memory import ConversationBufferMemory
from langchain.embeddings import GPT4AllEmbeddings
from langchain.llms import OpenAI
from chat_history import insert_chat_history, insert_chat_history_articles
from connection import connect
from css import load_css
from message import Message
from vector_store import CustomVectorStore
st.set_page_config(layout="wide")
st.title("Sorbobot - Le futur de la recherche scientifique interactive")
chat_column, doc_column = st.columns([2, 1])
conn = connect()
def initialize_session_state():
if "history" not in st.session_state:
st.session_state.history = []
if "token_count" not in st.session_state:
st.session_state.token_count = 0
if "conversation" not in st.session_state:
embeddings = GPT4AllEmbeddings()
db = CustomVectorStore(
embedding_function=embeddings,
table_name="article",
column_name="abstract_embedding",
connection=conn,
)
retriever = db.as_retriever()
llm = OpenAI(
temperature=0,
openai_api_key=os.environ["OPENAI_API_KEY"],
model="text-davinci-003",
)
memory = ConversationBufferMemory(
output_key="answer", memory_key="chat_history", return_messages=True
)
st.session_state.conversation = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=retriever,
verbose=True,
memory=memory,
return_source_documents=True,
)
def send_message_callback():
with st.spinner("Wait for it..."):
with get_openai_callback() as cb:
human_prompt = st.session_state.human_prompt.strip()
if len(human_prompt) == 0:
return
llm_response = st.session_state.conversation(human_prompt)
st.session_state.history.append(Message("human", human_prompt))
st.session_state.history.append(
Message(
"ai",
llm_response["answer"],
documents=llm_response["source_documents"],
)
)
st.session_state.token_count += cb.total_tokens
if os.environ.get("ENVIRONMENT") == "dev":
history_id = insert_chat_history(conn, human_prompt, llm_response["answer"])
insert_chat_history_articles(conn, history_id, llm_response["source_documents"])
def exemple_message_callback_button(args):
st.session_state.human_prompt = args
send_message_callback()
st.session_state.human_prompt = ""
def clear_history():
st.session_state.history.clear()
st.session_state.token_count = 0
st.session_state.conversation.memory.clear()
load_css()
initialize_session_state()
exemples = [
"Who has published influential research on quantum computing?",
"List any prominent authors in the field of artificial intelligence ethics?",
"Who are the leading experts on climate change mitigation strategies?",
]
with chat_column:
chat_placeholder = st.container()
prompt_placeholder = st.form("chat-form", clear_on_submit=True)
information_placeholder = st.container()
with chat_placeholder:
for chat in st.session_state.history:
div = f"""
<div class="chat-row
{'' if chat.origin == 'ai' else 'row-reverse'}">
<img class="chat-icon" src="./app/static/{
'ai_icon.png' if chat.origin == 'ai'
else 'user_icon.png'}"
width=32 height=32>
<div class="chat-bubble
{'ai-bubble' if chat.origin == 'ai' else 'human-bubble'}">
​{chat.message}
</div>
</div>
"""
st.markdown(div, unsafe_allow_html=True)
for _ in range(3):
st.markdown("")
with prompt_placeholder:
st.markdown("**Chat**")
cols = st.columns((6, 1))
cols[0].text_input(
"Chat",
label_visibility="collapsed",
key="human_prompt",
)
cols[1].form_submit_button(
"Submit",
type="primary",
on_click=send_message_callback,
)
if st.session_state.token_count == 0:
information_placeholder.markdown("### Test me !")
for idx_exemple, exemple in enumerate(exemples):
information_placeholder.button(
exemple,
key=f"{idx_exemple}_button",
on_click=exemple_message_callback_button,
args=(exemple,)
)
st.button(":new: Start a new conversation", on_click=clear_history, type="secondary")
information_placeholder.caption(
f"""
Used {st.session_state.token_count} tokens \n
Debug Langchain conversation:
{st.session_state.history}
"""
)
components.html(
"""
<script>
const streamlitDoc = window.parent.document;
const buttons = Array.from(
streamlitDoc.querySelectorAll('.stButton > button')
);
const submitButton = buttons.find(
el => el.innerText === 'Submit'
);
streamlitDoc.addEventListener('keydown', function(e) {
switch (e.key) {
case 'Enter':
submitButton.click();
break;
}
});
</script>
""",
height=0,
width=0,
)
with doc_column:
st.markdown("**Source documents**")
if len(st.session_state.history) > 0:
for doc in st.session_state.history[-1].documents:
doc_content = json.loads(doc.page_content)
expander = st.expander(doc_content["title"])
expander.markdown(f"**HalID** : https://hal.science/{doc_content['hal_id']}")
expander.markdown(doc_content["abstract"])
expander.markdown(f"**Authors** : {doc_content['authors']}")
expander.markdown(f"**Keywords** : {doc_content['keywords']}")
expander.markdown(f"**Distance** : {doc_content['distance']}")
|