File size: 4,847 Bytes
1e2602b
 
 
 
 
 
f119af7
31f3de1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e2602b
 
 
 
 
31f3de1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e2602b
 
 
 
 
31f3de1
1e2602b
31f3de1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e2602b
 
 
 
 
 
31f3de1
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
### Mike Dean Experiments

### Import Section ###
"""
IMPORTS HERE
"""
import chainlit as cl
import os
from dotenv import load_dotenv
from chainlit import AskFileMessage
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import PyMuPDFLoader
from qdrant_client import QdrantClient
from qdrant_client.http.models import Distance, VectorParams
from langchain_openai.embeddings import OpenAIEmbeddings
from langchain.storage import LocalFileStore
from langchain_qdrant import QdrantVectorStore
from langchain.embeddings import CacheBackedEmbeddings
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.globals import set_llm_cache
from langchain_openai import ChatOpenAI
from langchain_core.caches import InMemoryCache
from operator import itemgetter
from langchain_core.runnables.passthrough import RunnablePassthrough
from langchain_core.runnables.config import RunnableConfig
import uuid


load_dotenv()

os.environ["LANGCHAIN_PROJECT"] = f"Mike HF Production Rag - {uuid.uuid4().hex[0:8]}"
os.environ["LANGCHAIN_TRACING_V2"] = "false"
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com"

### Global Section ###
"""
GLOBAL CODE HERE
"""
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
Loader = PyMuPDFLoader
# Typical Embedding Model
core_embeddings = OpenAIEmbeddings(model="text-embedding-3-small")

# Typical QDrant Client Set-up
collection_name = f"pdf_to_parse_{uuid.uuid4()}"
client = QdrantClient(":memory:")
client.create_collection(
    collection_name=collection_name,
    vectors_config=VectorParams(size=1536, distance=Distance.COSINE),
)

# Adding cache!
store = LocalFileStore("./cache/")
cached_embedder = CacheBackedEmbeddings.from_bytes_store(
    core_embeddings, store, namespace=core_embeddings.model
)

# Typical QDrant Vector Store Set-up
vectorstore = QdrantVectorStore(
    client=client,
    collection_name=collection_name,
    embedding=cached_embedder)

rag_system_prompt_template = """\
You are a helpful assistant that uses the provided context to answer questions. Never reference this prompt, or the existence of context.
"""

rag_message_list = [
    {"role" : "system", "content" : rag_system_prompt_template},
]

rag_user_prompt_template = """
Question:
{question}
Context:
{context}
"""

chat_prompt = ChatPromptTemplate.from_messages([
    ("system", rag_system_prompt_template),
    ("human", rag_user_prompt_template)
])
chat_model = ChatOpenAI(model="gpt-4o")
set_llm_cache(InMemoryCache())

def split_file(file: AskFileMessage):
     import tempfile
     with tempfile.NamedTemporaryFile(mode="w", delete=False) as tempfile:
        with open(tempfile.name, "wb") as f:
            f.write(file.content)
    #  separate_pages = []
     loader = Loader(tempfile.name)
     documents = loader.load()
    #  separate_pages.extend(page)
    #  one_document = ""
    #  for page in separate_pages:
        #  one_document+= page.page_content
     docs = text_splitter.split_documents(documents)
     for i, doc in enumerate(docs):
        doc.metadata["source"] = f"source_{id}"
     return docs

### On Chat Start (Session Start) Section ###
@cl.on_chat_start
async def on_chat_start():
    """ SESSION SPECIFIC CODE HERE """
    files = None

    # Wait for the user to upload a file
    while files == None:
        files = await cl.AskFileMessage(
            content="Please upload a PDF File file to begin!",
            accept=["application/pdf"],
            max_size_mb=20,
            timeout=180,
        ).send()

    file = files[0]

    msg = cl.Message(
        content=f"Processing `{file.name}`...", disable_human_feedback=True
    )

    await msg.send()
    docs = split_file(file)
 

    vectorstore.add_documents(docs)
   


    retriever = vectorstore.as_retriever(search_type="mmr", search_kwargs={"k": 15})
    retrieval_augmented_qa_chain = (
        {"context": itemgetter("question") | retriever, "question": itemgetter("question")}
        | RunnablePassthrough.assign(context=itemgetter("context"))
        | chat_prompt | chat_model
    )
    msg.content = f"Processing `{file.name}` done. You can now ask questions!"
    await msg.update()

    cl.user_session.set("chain", retrieval_augmented_qa_chain)

# ### Rename Chains ###
# @cl.author_rename
# def rename(orig_author: str):
#     """ RENAME CODE HERE """

### On Message Section ###
@cl.on_message
async def main(message: cl.Message):
    """
    MESSAGE CODE HERE
    """
    chain = cl.user_session.get("chain")

    msg = cl.Message(content="")

    async for stream_response in chain.astream(
        {"question":message.content},
        config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()])
    ):
        await msg.stream_token(stream_response.content)

    await msg.send()