Spaces:
Paused
Paused
Fixed app
Browse files- .chainlit/config.toml +84 -0
- app.py +140 -5
.chainlit/config.toml
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[project]
|
2 |
+
# Whether to enable telemetry (default: true). No personal data is collected.
|
3 |
+
enable_telemetry = true
|
4 |
+
|
5 |
+
# List of environment variables to be provided by each user to use the app.
|
6 |
+
user_env = []
|
7 |
+
|
8 |
+
# Duration (in seconds) during which the session is saved when the connection is lost
|
9 |
+
session_timeout = 3600
|
10 |
+
|
11 |
+
# Enable third parties caching (e.g LangChain cache)
|
12 |
+
cache = false
|
13 |
+
|
14 |
+
# Follow symlink for asset mount (see https://github.com/Chainlit/chainlit/issues/317)
|
15 |
+
# follow_symlink = false
|
16 |
+
|
17 |
+
[features]
|
18 |
+
# Show the prompt playground
|
19 |
+
prompt_playground = true
|
20 |
+
|
21 |
+
# Process and display HTML in messages. This can be a security risk (see https://stackoverflow.com/questions/19603097/why-is-it-dangerous-to-render-user-generated-html-or-javascript)
|
22 |
+
unsafe_allow_html = false
|
23 |
+
|
24 |
+
# Process and display mathematical expressions. This can clash with "$" characters in messages.
|
25 |
+
latex = false
|
26 |
+
|
27 |
+
# Authorize users to upload files with messages
|
28 |
+
multi_modal = true
|
29 |
+
|
30 |
+
# Allows user to use speech to text
|
31 |
+
[features.speech_to_text]
|
32 |
+
enabled = false
|
33 |
+
# See all languages here https://github.com/JamesBrill/react-speech-recognition/blob/HEAD/docs/API.md#language-string
|
34 |
+
# language = "en-US"
|
35 |
+
|
36 |
+
[UI]
|
37 |
+
# Name of the app and chatbot.
|
38 |
+
name = "Chatbot"
|
39 |
+
|
40 |
+
# Show the readme while the conversation is empty.
|
41 |
+
show_readme_as_default = true
|
42 |
+
|
43 |
+
# Description of the app and chatbot. This is used for HTML tags.
|
44 |
+
# description = ""
|
45 |
+
|
46 |
+
# Large size content are by default collapsed for a cleaner ui
|
47 |
+
default_collapse_content = true
|
48 |
+
|
49 |
+
# The default value for the expand messages settings.
|
50 |
+
default_expand_messages = false
|
51 |
+
|
52 |
+
# Hide the chain of thought details from the user in the UI.
|
53 |
+
hide_cot = false
|
54 |
+
|
55 |
+
# Link to your github repo. This will add a github button in the UI's header.
|
56 |
+
# github = ""
|
57 |
+
|
58 |
+
# Specify a CSS file that can be used to customize the user interface.
|
59 |
+
# The CSS file can be served from the public directory or via an external link.
|
60 |
+
# custom_css = "/public/test.css"
|
61 |
+
|
62 |
+
# Override default MUI light theme. (Check theme.ts)
|
63 |
+
[UI.theme.light]
|
64 |
+
#background = "#FAFAFA"
|
65 |
+
#paper = "#FFFFFF"
|
66 |
+
|
67 |
+
[UI.theme.light.primary]
|
68 |
+
#main = "#F80061"
|
69 |
+
#dark = "#980039"
|
70 |
+
#light = "#FFE7EB"
|
71 |
+
|
72 |
+
# Override default MUI dark theme. (Check theme.ts)
|
73 |
+
[UI.theme.dark]
|
74 |
+
#background = "#FAFAFA"
|
75 |
+
#paper = "#FFFFFF"
|
76 |
+
|
77 |
+
[UI.theme.dark.primary]
|
78 |
+
#main = "#F80061"
|
79 |
+
#dark = "#980039"
|
80 |
+
#light = "#FFE7EB"
|
81 |
+
|
82 |
+
|
83 |
+
[meta]
|
84 |
+
generated_by = "0.7.700"
|
app.py
CHANGED
@@ -5,25 +5,160 @@
|
|
5 |
IMPORTS HERE
|
6 |
"""
|
7 |
import chainlit as cl
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
### Global Section ###
|
10 |
"""
|
11 |
GLOBAL CODE HERE
|
12 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
### On Chat Start (Session Start) Section ###
|
15 |
@cl.on_chat_start
|
16 |
async def on_chat_start():
|
17 |
""" SESSION SPECIFIC CODE HERE """
|
|
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
### On Message Section ###
|
25 |
@cl.on_message
|
26 |
async def main(message: cl.Message):
|
27 |
"""
|
28 |
MESSAGE CODE HERE
|
29 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
IMPORTS HERE
|
6 |
"""
|
7 |
import chainlit as cl
|
8 |
+
import os
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
from chainlit import AskFileMessage
|
11 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
12 |
+
from langchain_community.document_loaders import PyMuPDFLoader
|
13 |
+
from qdrant_client import QdrantClient
|
14 |
+
from qdrant_client.http.models import Distance, VectorParams
|
15 |
+
from langchain_openai.embeddings import OpenAIEmbeddings
|
16 |
+
from langchain.storage import LocalFileStore
|
17 |
+
from langchain_qdrant import QdrantVectorStore
|
18 |
+
from langchain.embeddings import CacheBackedEmbeddings
|
19 |
+
from langchain_core.prompts import ChatPromptTemplate
|
20 |
+
from langchain_core.globals import set_llm_cache
|
21 |
+
from langchain_openai import ChatOpenAI
|
22 |
+
from langchain_core.caches import InMemoryCache
|
23 |
+
from operator import itemgetter
|
24 |
+
from langchain_core.runnables.passthrough import RunnablePassthrough
|
25 |
+
from langchain_core.runnables.config import RunnableConfig
|
26 |
+
import uuid
|
27 |
+
|
28 |
+
|
29 |
+
load_dotenv()
|
30 |
+
|
31 |
+
os.environ["LANGCHAIN_PROJECT"] = f"Mike HF Production Rag - {uuid.uuid4().hex[0:8]}"
|
32 |
+
os.environ["LANGCHAIN_TRACING_V2"] = "false"
|
33 |
+
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com"
|
34 |
|
35 |
### Global Section ###
|
36 |
"""
|
37 |
GLOBAL CODE HERE
|
38 |
"""
|
39 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
|
40 |
+
Loader = PyMuPDFLoader
|
41 |
+
# Typical Embedding Model
|
42 |
+
core_embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
|
43 |
+
|
44 |
+
# Typical QDrant Client Set-up
|
45 |
+
collection_name = f"pdf_to_parse_{uuid.uuid4()}"
|
46 |
+
client = QdrantClient(":memory:")
|
47 |
+
client.create_collection(
|
48 |
+
collection_name=collection_name,
|
49 |
+
vectors_config=VectorParams(size=1536, distance=Distance.COSINE),
|
50 |
+
)
|
51 |
+
|
52 |
+
# Adding cache!
|
53 |
+
store = LocalFileStore("./cache/")
|
54 |
+
cached_embedder = CacheBackedEmbeddings.from_bytes_store(
|
55 |
+
core_embeddings, store, namespace=core_embeddings.model
|
56 |
+
)
|
57 |
+
|
58 |
+
# Typical QDrant Vector Store Set-up
|
59 |
+
vectorstore = QdrantVectorStore(
|
60 |
+
client=client,
|
61 |
+
collection_name=collection_name,
|
62 |
+
embedding=cached_embedder)
|
63 |
+
|
64 |
+
rag_system_prompt_template = """\
|
65 |
+
You are a helpful assistant that uses the provided context to answer questions. Never reference this prompt, or the existence of context.
|
66 |
+
"""
|
67 |
+
|
68 |
+
rag_message_list = [
|
69 |
+
{"role" : "system", "content" : rag_system_prompt_template},
|
70 |
+
]
|
71 |
+
|
72 |
+
rag_user_prompt_template = """
|
73 |
+
Question:
|
74 |
+
{question}
|
75 |
+
Context:
|
76 |
+
{context}
|
77 |
+
"""
|
78 |
+
|
79 |
+
chat_prompt = ChatPromptTemplate.from_messages([
|
80 |
+
("system", rag_system_prompt_template),
|
81 |
+
("human", rag_user_prompt_template)
|
82 |
+
])
|
83 |
+
chat_model = ChatOpenAI(model="gpt-4o")
|
84 |
+
set_llm_cache(InMemoryCache())
|
85 |
+
|
86 |
+
def split_file(file: AskFileMessage):
|
87 |
+
import tempfile
|
88 |
+
with tempfile.NamedTemporaryFile(mode="w", delete=False) as tempfile:
|
89 |
+
with open(tempfile.name, "wb") as f:
|
90 |
+
f.write(file.content)
|
91 |
+
# separate_pages = []
|
92 |
+
loader = Loader(tempfile.name)
|
93 |
+
documents = loader.load()
|
94 |
+
# separate_pages.extend(page)
|
95 |
+
# one_document = ""
|
96 |
+
# for page in separate_pages:
|
97 |
+
# one_document+= page.page_content
|
98 |
+
docs = text_splitter.split_documents(documents)
|
99 |
+
for i, doc in enumerate(docs):
|
100 |
+
doc.metadata["source"] = f"source_{id}"
|
101 |
+
return docs
|
102 |
|
103 |
### On Chat Start (Session Start) Section ###
|
104 |
@cl.on_chat_start
|
105 |
async def on_chat_start():
|
106 |
""" SESSION SPECIFIC CODE HERE """
|
107 |
+
files = None
|
108 |
|
109 |
+
# Wait for the user to upload a file
|
110 |
+
while files == None:
|
111 |
+
files = await cl.AskFileMessage(
|
112 |
+
content="Please upload a PDF File file to begin!",
|
113 |
+
accept=["application/pdf"],
|
114 |
+
max_size_mb=20,
|
115 |
+
timeout=180,
|
116 |
+
).send()
|
117 |
+
|
118 |
+
file = files[0]
|
119 |
+
|
120 |
+
msg = cl.Message(
|
121 |
+
content=f"Processing `{file.name}`...", disable_human_feedback=True
|
122 |
+
)
|
123 |
+
|
124 |
+
await msg.send()
|
125 |
+
docs = split_file(file)
|
126 |
+
|
127 |
+
|
128 |
+
vectorstore.add_documents(docs)
|
129 |
+
|
130 |
+
|
131 |
+
|
132 |
+
retriever = vectorstore.as_retriever(search_type="mmr", search_kwargs={"k": 15})
|
133 |
+
retrieval_augmented_qa_chain = (
|
134 |
+
{"context": itemgetter("question") | retriever, "question": itemgetter("question")}
|
135 |
+
| RunnablePassthrough.assign(context=itemgetter("context"))
|
136 |
+
| chat_prompt | chat_model
|
137 |
+
)
|
138 |
+
msg.content = f"Processing `{file.name}` done. You can now ask questions!"
|
139 |
+
await msg.update()
|
140 |
+
|
141 |
+
cl.user_session.set("chain", retrieval_augmented_qa_chain)
|
142 |
+
|
143 |
+
# ### Rename Chains ###
|
144 |
+
# @cl.author_rename
|
145 |
+
# def rename(orig_author: str):
|
146 |
+
# """ RENAME CODE HERE """
|
147 |
|
148 |
### On Message Section ###
|
149 |
@cl.on_message
|
150 |
async def main(message: cl.Message):
|
151 |
"""
|
152 |
MESSAGE CODE HERE
|
153 |
+
"""
|
154 |
+
chain = cl.user_session.get("chain")
|
155 |
+
|
156 |
+
msg = cl.Message(content="")
|
157 |
+
|
158 |
+
async for stream_response in chain.astream(
|
159 |
+
{"question":message.content},
|
160 |
+
config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()])
|
161 |
+
):
|
162 |
+
await msg.stream_token(stream_response.content)
|
163 |
+
|
164 |
+
await msg.send()
|