Spaces:
Build error
Build error
minor: debugging prints
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ import gradio as gr
|
|
4 |
import torch
|
5 |
import logging
|
6 |
from diffusers import DiffusionPipeline
|
7 |
-
from transformers import LlamaForCausalLM, PreTrainedTokenizerFast
|
8 |
from transformer_hidream_image import HiDreamImageTransformer2DModel
|
9 |
from pipeline_hidream_image import HiDreamImagePipeline
|
10 |
from schedulers.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
@@ -12,6 +12,8 @@ from schedulers.flash_flow_match import FlashFlowMatchEulerDiscreteScheduler
|
|
12 |
|
13 |
import subprocess
|
14 |
|
|
|
|
|
15 |
try:
|
16 |
print(subprocess.check_output(["nvcc", "--version"]).decode("utf-8"))
|
17 |
except:
|
@@ -32,6 +34,7 @@ RESOLUTION_OPTIONS = [
|
|
32 |
"1248 × 832 (Landscape)",
|
33 |
"832 × 1248 (Portrait)"
|
34 |
]
|
|
|
35 |
|
36 |
MODEL_PREFIX = "azaneko"
|
37 |
LLAMA_MODEL_NAME = "hugging-quants/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4"
|
@@ -69,6 +72,7 @@ pipe = HiDreamImagePipeline.from_pretrained(
|
|
69 |
tokenizer_4=tokenizer_4,
|
70 |
text_encoder_4=text_encoder_4,
|
71 |
torch_dtype=torch.bfloat16,
|
|
|
72 |
)
|
73 |
pipe.transformer = transformer
|
74 |
log_vram("✅ Pipeline loaded!")
|
|
|
4 |
import torch
|
5 |
import logging
|
6 |
from diffusers import DiffusionPipeline
|
7 |
+
from transformers import LlamaForCausalLM, PreTrainedTokenizerFast, BitsAndBytesConfig
|
8 |
from transformer_hidream_image import HiDreamImageTransformer2DModel
|
9 |
from pipeline_hidream_image import HiDreamImagePipeline
|
10 |
from schedulers.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
|
|
12 |
|
13 |
import subprocess
|
14 |
|
15 |
+
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
16 |
+
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
|
17 |
try:
|
18 |
print(subprocess.check_output(["nvcc", "--version"]).decode("utf-8"))
|
19 |
except:
|
|
|
34 |
"1248 × 832 (Landscape)",
|
35 |
"832 × 1248 (Portrait)"
|
36 |
]
|
37 |
+
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
38 |
|
39 |
MODEL_PREFIX = "azaneko"
|
40 |
LLAMA_MODEL_NAME = "hugging-quants/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4"
|
|
|
72 |
tokenizer_4=tokenizer_4,
|
73 |
text_encoder_4=text_encoder_4,
|
74 |
torch_dtype=torch.bfloat16,
|
75 |
+
quantization_config=quantization_config
|
76 |
)
|
77 |
pipe.transformer = transformer
|
78 |
log_vram("✅ Pipeline loaded!")
|