Spaces:
Build error
Build error
hm
Browse files
app.py
CHANGED
@@ -4,8 +4,12 @@ import gradio as gr
|
|
4 |
import torch
|
5 |
import logging
|
6 |
from diffusers import DiffusionPipeline
|
|
|
7 |
from transformer_hidream_image import HiDreamImageTransformer2DModel
|
8 |
from pipeline_hidream_image import HiDreamImagePipeline
|
|
|
|
|
|
|
9 |
import subprocess
|
10 |
|
11 |
try:
|
@@ -14,8 +18,10 @@ except:
|
|
14 |
print("nvcc version check error")
|
15 |
# subprocess.run('python -m pip install flash-attn --no-build-isolation', shell=True)
|
16 |
|
17 |
-
|
|
|
18 |
|
|
|
19 |
# Resolution options
|
20 |
RESOLUTION_OPTIONS = [
|
21 |
"1024 Γ 1024 (Square)",
|
@@ -27,24 +33,158 @@ RESOLUTION_OPTIONS = [
|
|
27 |
"832 Γ 1248 (Portrait)"
|
28 |
]
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
# Parse resolution string to get height and width
|
31 |
def parse_resolution(resolution_str):
|
32 |
return tuple(map(int, resolution_str.split("(")[0].strip().split(" Γ ")))
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
@spaces.GPU()
|
35 |
-
def gen_img_helper(
|
36 |
global pipe, current_model
|
37 |
|
38 |
# 1. Check if the model matches loaded model, load the model if not
|
39 |
-
if model != current_model:
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
|
49 |
# 2. Generate image
|
50 |
res = parse_resolution(res)
|
@@ -55,10 +195,10 @@ if __name__ == "__main__":
|
|
55 |
logging.getLogger("transformers.modeling_utils").setLevel(logging.ERROR)
|
56 |
|
57 |
# Initialize with default model
|
58 |
-
print("Loading default model (fast)...")
|
59 |
-
current_model = "fast"
|
60 |
-
pipe, _ = load_models(current_model)
|
61 |
-
print("Model loaded successfully!")
|
62 |
|
63 |
# Create Gradio interface
|
64 |
with gr.Blocks(title="HiDream-I1-nf4 Dashboard") as demo:
|
@@ -100,7 +240,7 @@ if __name__ == "__main__":
|
|
100 |
|
101 |
generate_btn.click(
|
102 |
fn=gen_img_helper,
|
103 |
-
inputs=[
|
104 |
outputs=[output_image, seed_used]
|
105 |
)
|
106 |
|
|
|
4 |
import torch
|
5 |
import logging
|
6 |
from diffusers import DiffusionPipeline
|
7 |
+
from transformers import LlamaForCausalLM, PreTrainedTokenizerFast
|
8 |
from transformer_hidream_image import HiDreamImageTransformer2DModel
|
9 |
from pipeline_hidream_image import HiDreamImagePipeline
|
10 |
+
from schedulers.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
11 |
+
from schedulers.flash_flow_match import FlashFlowMatchEulerDiscreteScheduler
|
12 |
+
|
13 |
import subprocess
|
14 |
|
15 |
try:
|
|
|
18 |
print("nvcc version check error")
|
19 |
# subprocess.run('python -m pip install flash-attn --no-build-isolation', shell=True)
|
20 |
|
21 |
+
def log_vram(msg: str):
|
22 |
+
print(f"{msg} (used {torch.cuda.memory_allocated() / 1024**2:.2f} MB VRAM)\n")
|
23 |
|
24 |
+
# from nf4 import *
|
25 |
# Resolution options
|
26 |
RESOLUTION_OPTIONS = [
|
27 |
"1024 Γ 1024 (Square)",
|
|
|
33 |
"832 Γ 1248 (Portrait)"
|
34 |
]
|
35 |
|
36 |
+
MODEL_PREFIX = "azaneko"
|
37 |
+
LLAMA_MODEL_NAME = "hugging-quants/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4"
|
38 |
+
FAST_CONFIG = {
|
39 |
+
"path": "azaneko/HiDream-I1-Fast-nf4",
|
40 |
+
"guidance_scale": 0.0,
|
41 |
+
"num_inference_steps": 16,
|
42 |
+
"shift": 3.0,
|
43 |
+
"scheduler": FlashFlowMatchEulerDiscreteScheduler
|
44 |
+
}
|
45 |
+
|
46 |
+
tokenizer_4 = PreTrainedTokenizerFast.from_pretrained(LLAMA_MODEL_NAME)
|
47 |
+
log_vram("β
Tokenizer loaded!")
|
48 |
+
|
49 |
+
text_encoder_4 = LlamaForCausalLM.from_pretrained(
|
50 |
+
LLAMA_MODEL_NAME,
|
51 |
+
output_hidden_states=True,
|
52 |
+
output_attentions=True,
|
53 |
+
return_dict_in_generate=True,
|
54 |
+
torch_dtype=torch.bfloat16,
|
55 |
+
device_map="auto",
|
56 |
+
)
|
57 |
+
log_vram("β
Text encoder loaded!")
|
58 |
+
|
59 |
+
transformer = HiDreamImageTransformer2DModel.from_pretrained(
|
60 |
+
"azaneko/HiDream-I1-Fast-nf4",
|
61 |
+
subfolder="transformer",
|
62 |
+
torch_dtype=torch.bfloat16
|
63 |
+
)
|
64 |
+
log_vram("β
Transformer loaded!")
|
65 |
+
|
66 |
+
pipe = HiDreamImagePipeline.from_pretrained(
|
67 |
+
"azaneko/HiDream-I1-Fast-nf4",
|
68 |
+
scheduler=FlowUniPCMultistepScheduler(num_train_timesteps=1000, shift=3.0, use_dynamic_shifting=False),
|
69 |
+
tokenizer_4=tokenizer_4,
|
70 |
+
text_encoder_4=text_encoder_4,
|
71 |
+
torch_dtype=torch.bfloat16,
|
72 |
+
)
|
73 |
+
pipe.transformer = transformer
|
74 |
+
log_vram("β
Pipeline loaded!")
|
75 |
+
pipe.enable_sequential_cpu_offload()
|
76 |
+
|
77 |
+
# Model configurations
|
78 |
+
MODEL_CONFIGS = {
|
79 |
+
"dev": {
|
80 |
+
"path": f"{MODEL_PREFIX}/HiDream-I1-Dev-nf4",
|
81 |
+
"guidance_scale": 0.0,
|
82 |
+
"num_inference_steps": 28,
|
83 |
+
"shift": 6.0,
|
84 |
+
"scheduler": FlashFlowMatchEulerDiscreteScheduler
|
85 |
+
},
|
86 |
+
"full": {
|
87 |
+
"path": f"{MODEL_PREFIX}/HiDream-I1-Full-nf4",
|
88 |
+
"guidance_scale": 5.0,
|
89 |
+
"num_inference_steps": 50,
|
90 |
+
"shift": 3.0,
|
91 |
+
"scheduler": FlowUniPCMultistepScheduler
|
92 |
+
},
|
93 |
+
"fast": {
|
94 |
+
"path": f"{MODEL_PREFIX}/HiDream-I1-Fast-nf4",
|
95 |
+
"guidance_scale": 0.0,
|
96 |
+
"num_inference_steps": 16,
|
97 |
+
"shift": 3.0,
|
98 |
+
"scheduler": FlashFlowMatchEulerDiscreteScheduler
|
99 |
+
}
|
100 |
+
}
|
101 |
+
|
102 |
# Parse resolution string to get height and width
|
103 |
def parse_resolution(resolution_str):
|
104 |
return tuple(map(int, resolution_str.split("(")[0].strip().split(" Γ ")))
|
105 |
|
106 |
+
|
107 |
+
# def load_models(model_type: str):
|
108 |
+
# config = MODEL_CONFIGS[model_type]
|
109 |
+
|
110 |
+
# tokenizer_4 = PreTrainedTokenizerFast.from_pretrained(LLAMA_MODEL_NAME)
|
111 |
+
# log_vram("β
Tokenizer loaded!")
|
112 |
+
|
113 |
+
# text_encoder_4 = LlamaForCausalLM.from_pretrained(
|
114 |
+
# LLAMA_MODEL_NAME,
|
115 |
+
# output_hidden_states=True,
|
116 |
+
# output_attentions=True,
|
117 |
+
# return_dict_in_generate=True,
|
118 |
+
# torch_dtype=torch.bfloat16,
|
119 |
+
# device_map="auto",
|
120 |
+
# )
|
121 |
+
# log_vram("β
Text encoder loaded!")
|
122 |
+
|
123 |
+
# transformer = HiDreamImageTransformer2DModel.from_pretrained(
|
124 |
+
# config["path"],
|
125 |
+
# subfolder="transformer",
|
126 |
+
# torch_dtype=torch.bfloat16
|
127 |
+
# )
|
128 |
+
# log_vram("β
Transformer loaded!")
|
129 |
+
|
130 |
+
# pipe = HiDreamImagePipeline.from_pretrained(
|
131 |
+
# config["path"],
|
132 |
+
# scheduler=FlowUniPCMultistepScheduler(num_train_timesteps=1000, shift=config["shift"], use_dynamic_shifting=False),
|
133 |
+
# tokenizer_4=tokenizer_4,
|
134 |
+
# text_encoder_4=text_encoder_4,
|
135 |
+
# torch_dtype=torch.bfloat16,
|
136 |
+
# )
|
137 |
+
# pipe.transformer = transformer
|
138 |
+
# log_vram("β
Pipeline loaded!")
|
139 |
+
# pipe.enable_sequential_cpu_offload()
|
140 |
+
|
141 |
+
# return pipe, config
|
142 |
+
|
143 |
+
|
144 |
+
#@torch.inference_mode()
|
145 |
+
@spaces.GPU()
|
146 |
+
def generate_image(pipe: HiDreamImagePipeline, model_type: str, prompt: str, resolution: tuple[int, int], seed: int):
|
147 |
+
# Get configuration for current model
|
148 |
+
config = MODEL_CONFIGS[model_type]
|
149 |
+
guidance_scale = 0.0
|
150 |
+
num_inference_steps = 16
|
151 |
+
|
152 |
+
# Parse resolution
|
153 |
+
width, height = resolution
|
154 |
+
|
155 |
+
# Handle seed
|
156 |
+
if seed == -1:
|
157 |
+
seed = torch.randint(0, 1000000, (1,)).item()
|
158 |
+
|
159 |
+
generator = torch.Generator("cuda").manual_seed(seed)
|
160 |
+
|
161 |
+
images = pipe(
|
162 |
+
prompt,
|
163 |
+
height=height,
|
164 |
+
width=width,
|
165 |
+
guidance_scale=guidance_scale,
|
166 |
+
num_inference_steps=num_inference_steps,
|
167 |
+
num_images_per_prompt=1,
|
168 |
+
generator=generator
|
169 |
+
).images
|
170 |
+
|
171 |
+
return images[0], seed
|
172 |
+
|
173 |
+
|
174 |
@spaces.GPU()
|
175 |
+
def gen_img_helper(prompt, res, seed):
|
176 |
global pipe, current_model
|
177 |
|
178 |
# 1. Check if the model matches loaded model, load the model if not
|
179 |
+
# if model != current_model:
|
180 |
+
# print(f"Unloading model {current_model}...")
|
181 |
+
# del pipe
|
182 |
+
# torch.cuda.empty_cache()
|
183 |
|
184 |
+
# print(f"Loading model {model}...")
|
185 |
+
# pipe, _ = load_models(model)
|
186 |
+
# current_model = model
|
187 |
+
# print("Model loaded successfully!")
|
188 |
|
189 |
# 2. Generate image
|
190 |
res = parse_resolution(res)
|
|
|
195 |
logging.getLogger("transformers.modeling_utils").setLevel(logging.ERROR)
|
196 |
|
197 |
# Initialize with default model
|
198 |
+
# print("Loading default model (fast)...")
|
199 |
+
# current_model = "fast"
|
200 |
+
# pipe, _ = load_models(current_model)
|
201 |
+
# print("Model loaded successfully!")
|
202 |
|
203 |
# Create Gradio interface
|
204 |
with gr.Blocks(title="HiDream-I1-nf4 Dashboard") as demo:
|
|
|
240 |
|
241 |
generate_btn.click(
|
242 |
fn=gen_img_helper,
|
243 |
+
inputs=[prompt, resolution, seed],
|
244 |
outputs=[output_image, seed_used]
|
245 |
)
|
246 |
|
nf4.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import torch
|
|
|
2 |
from transformers import LlamaForCausalLM, PreTrainedTokenizerFast
|
3 |
|
4 |
from pipeline_hidream_image import HiDreamImagePipeline
|
|
|
1 |
import torch
|
2 |
+
import spaces
|
3 |
from transformers import LlamaForCausalLM, PreTrainedTokenizerFast
|
4 |
|
5 |
from pipeline_hidream_image import HiDreamImagePipeline
|