Spaces:
Build error
Build error
minor: undo
Browse files
app.py
CHANGED
@@ -3,7 +3,6 @@ import spaces
|
|
3 |
import gradio as gr
|
4 |
import torch
|
5 |
import logging
|
6 |
-
from diffusers import DiffusionPipeline
|
7 |
from transformers import LlamaForCausalLM, PreTrainedTokenizerFast, BitsAndBytesConfig
|
8 |
from transformer_hidream_image import HiDreamImageTransformer2DModel
|
9 |
from pipeline_hidream_image import HiDreamImagePipeline
|
@@ -34,7 +33,7 @@ RESOLUTION_OPTIONS = [
|
|
34 |
"1248 × 832 (Landscape)",
|
35 |
"832 × 1248 (Portrait)"
|
36 |
]
|
37 |
-
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
38 |
|
39 |
MODEL_PREFIX = "azaneko"
|
40 |
LLAMA_MODEL_NAME = "hugging-quants/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4"
|
@@ -72,7 +71,7 @@ pipe = HiDreamImagePipeline.from_pretrained(
|
|
72 |
tokenizer_4=tokenizer_4,
|
73 |
text_encoder_4=text_encoder_4,
|
74 |
torch_dtype=torch.bfloat16,
|
75 |
-
quantization_config=quantization_config
|
76 |
)
|
77 |
pipe.transformer = transformer
|
78 |
log_vram("✅ Pipeline loaded!")
|
@@ -149,7 +148,7 @@ def parse_resolution(resolution_str):
|
|
149 |
@spaces.GPU()
|
150 |
def generate_image(pipe: HiDreamImagePipeline, model_type: str, prompt: str, resolution: tuple[int, int], seed: int):
|
151 |
# Get configuration for current model
|
152 |
-
config = MODEL_CONFIGS[model_type]
|
153 |
guidance_scale = 0.0
|
154 |
num_inference_steps = 16
|
155 |
|
|
|
3 |
import gradio as gr
|
4 |
import torch
|
5 |
import logging
|
|
|
6 |
from transformers import LlamaForCausalLM, PreTrainedTokenizerFast, BitsAndBytesConfig
|
7 |
from transformer_hidream_image import HiDreamImageTransformer2DModel
|
8 |
from pipeline_hidream_image import HiDreamImagePipeline
|
|
|
33 |
"1248 × 832 (Landscape)",
|
34 |
"832 × 1248 (Portrait)"
|
35 |
]
|
36 |
+
# quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
37 |
|
38 |
MODEL_PREFIX = "azaneko"
|
39 |
LLAMA_MODEL_NAME = "hugging-quants/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4"
|
|
|
71 |
tokenizer_4=tokenizer_4,
|
72 |
text_encoder_4=text_encoder_4,
|
73 |
torch_dtype=torch.bfloat16,
|
74 |
+
# quantization_config=quantization_config
|
75 |
)
|
76 |
pipe.transformer = transformer
|
77 |
log_vram("✅ Pipeline loaded!")
|
|
|
148 |
@spaces.GPU()
|
149 |
def generate_image(pipe: HiDreamImagePipeline, model_type: str, prompt: str, resolution: tuple[int, int], seed: int):
|
150 |
# Get configuration for current model
|
151 |
+
# config = MODEL_CONFIGS[model_type]
|
152 |
guidance_scale = 0.0
|
153 |
num_inference_steps = 16
|
154 |
|