Spaces:
Running
on
Zero
Running
on
Zero
app.py
CHANGED
@@ -3,36 +3,40 @@ import gradio as gr
|
|
3 |
import torch
|
4 |
from diffusers import DiffusionPipeline
|
5 |
|
6 |
-
# Read token
|
7 |
token = os.environ.get("HUGGINGFACE_TOKEN")
|
8 |
-
if token
|
9 |
raise ValueError("Environment variable HUGGINGFACE_TOKEN is not set.")
|
10 |
|
11 |
-
|
|
|
|
|
|
|
12 |
|
13 |
-
# Load pipeline
|
|
|
14 |
pipe = DiffusionPipeline.from_pretrained(
|
15 |
model_id,
|
16 |
-
torch_dtype=
|
17 |
trust_remote_code=True,
|
18 |
use_auth_token=token
|
19 |
-
).to("cuda")
|
20 |
|
21 |
# Enable memory-saving features
|
22 |
pipe.enable_attention_slicing()
|
23 |
|
24 |
# Generation function
|
25 |
def generate_video(image, prompt, num_frames=16, steps=50, guidance_scale=7.5):
|
26 |
-
|
27 |
prompt=prompt,
|
28 |
init_image=image,
|
29 |
num_inference_steps=steps,
|
30 |
guidance_scale=guidance_scale,
|
31 |
num_frames=num_frames
|
32 |
)
|
33 |
-
return
|
34 |
|
35 |
-
# Gradio UI
|
36 |
def main():
|
37 |
with gr.Blocks() as demo:
|
38 |
gr.Markdown("# Wan2.1 Image-to-Video Demo")
|
|
|
3 |
import torch
|
4 |
from diffusers import DiffusionPipeline
|
5 |
|
6 |
+
# Read token and optional model override from environment
|
7 |
token = os.environ.get("HUGGINGFACE_TOKEN")
|
8 |
+
if not token:
|
9 |
raise ValueError("Environment variable HUGGINGFACE_TOKEN is not set.")
|
10 |
|
11 |
+
# Use the Diffusers-ready model repository by default
|
12 |
+
model_id = os.environ.get(
|
13 |
+
"WAN_MODEL_ID", "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
|
14 |
+
)
|
15 |
|
16 |
+
# Load the pipeline with remote code support
|
17 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
18 |
pipe = DiffusionPipeline.from_pretrained(
|
19 |
model_id,
|
20 |
+
torch_dtype=torch_dtype,
|
21 |
trust_remote_code=True,
|
22 |
use_auth_token=token
|
23 |
+
).to("cuda" if torch.cuda.is_available() else "cpu")
|
24 |
|
25 |
# Enable memory-saving features
|
26 |
pipe.enable_attention_slicing()
|
27 |
|
28 |
# Generation function
|
29 |
def generate_video(image, prompt, num_frames=16, steps=50, guidance_scale=7.5):
|
30 |
+
output = pipe(
|
31 |
prompt=prompt,
|
32 |
init_image=image,
|
33 |
num_inference_steps=steps,
|
34 |
guidance_scale=guidance_scale,
|
35 |
num_frames=num_frames
|
36 |
)
|
37 |
+
return output.videos
|
38 |
|
39 |
+
# Gradio UI
|
40 |
def main():
|
41 |
with gr.Blocks() as demo:
|
42 |
gr.Markdown("# Wan2.1 Image-to-Video Demo")
|