Spaces:
Running
on
Zero
Running
on
Zero
- requirements.txt +0 -5
- app.py +18 -12
requirements.txt
CHANGED
@@ -1,12 +1,7 @@
|
|
1 |
-
# Gradio UI
|
2 |
gradio
|
3 |
-
# Transformers + Diffusers
|
4 |
transformers>=4.30.0
|
5 |
diffusers>=0.16.0
|
6 |
-
# PyTorch
|
7 |
torch>=2.4.0
|
8 |
-
# Wan-VAE and DiT dependencies
|
9 |
xfuser>=0.4.1
|
10 |
accelerate
|
11 |
-
# Optional: huggingface_hub for model download
|
12 |
huggingface_hub>=0.13.0
|
|
|
|
|
1 |
gradio
|
|
|
2 |
transformers>=4.30.0
|
3 |
diffusers>=0.16.0
|
|
|
4 |
torch>=2.4.0
|
|
|
5 |
xfuser>=0.4.1
|
6 |
accelerate
|
|
|
7 |
huggingface_hub>=0.13.0
|
app.py
CHANGED
@@ -1,32 +1,38 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from diffusers import DiffusionPipeline
|
4 |
-
from huggingface_hub import hf_hub_download
|
5 |
|
6 |
-
#
|
|
|
|
|
|
|
|
|
7 |
model_id = "Wan-AI/Wan2.1-I2V-14B-480P"
|
8 |
-
ckpt_dir = hf_hub_download(repo_id=model_id, filename=".")
|
9 |
|
|
|
10 |
pipe = DiffusionPipeline.from_pretrained(
|
11 |
model_id,
|
12 |
torch_dtype=torch.float16,
|
13 |
-
|
|
|
14 |
).to("cuda")
|
15 |
|
|
|
16 |
pipe.enable_attention_slicing()
|
17 |
|
18 |
-
|
19 |
-
def generate_video(image, prompt, num_frames=16):
|
20 |
-
|
21 |
prompt=prompt,
|
22 |
init_image=image,
|
23 |
-
num_inference_steps=
|
24 |
-
guidance_scale=
|
25 |
num_frames=num_frames
|
26 |
-
)
|
27 |
-
return
|
28 |
|
29 |
-
# Gradio UI
|
30 |
def main():
|
31 |
with gr.Blocks() as demo:
|
32 |
gr.Markdown("# Wan2.1 Image-to-Video Demo")
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
from diffusers import DiffusionPipeline
|
|
|
5 |
|
6 |
+
# Read token from environment (configured as a Space secret)
|
7 |
+
token = os.environ.get("HUGGINGFACE_TOKEN")
|
8 |
+
if token is None:
|
9 |
+
raise ValueError("Environment variable HUGGINGFACE_TOKEN is not set.")
|
10 |
+
|
11 |
model_id = "Wan-AI/Wan2.1-I2V-14B-480P"
|
|
|
12 |
|
13 |
+
# Load pipeline directly from the Hub, using the token
|
14 |
pipe = DiffusionPipeline.from_pretrained(
|
15 |
model_id,
|
16 |
torch_dtype=torch.float16,
|
17 |
+
trust_remote_code=True,
|
18 |
+
use_auth_token=token
|
19 |
).to("cuda")
|
20 |
|
21 |
+
# Enable memory-saving features
|
22 |
pipe.enable_attention_slicing()
|
23 |
|
24 |
+
# Generation function
|
25 |
+
def generate_video(image, prompt, num_frames=16, steps=50, guidance_scale=7.5):
|
26 |
+
result = pipe(
|
27 |
prompt=prompt,
|
28 |
init_image=image,
|
29 |
+
num_inference_steps=steps,
|
30 |
+
guidance_scale=guidance_scale,
|
31 |
num_frames=num_frames
|
32 |
+
)
|
33 |
+
return result.videos
|
34 |
|
35 |
+
# Gradio UI definition
|
36 |
def main():
|
37 |
with gr.Blocks() as demo:
|
38 |
gr.Markdown("# Wan2.1 Image-to-Video Demo")
|