Experiment / app.py
Kidbea's picture
e
e0a1d8c
raw
history blame
1.57 kB
import os
import gradio as gr
import torch
from diffusers import DiffusionPipeline
# Read token and optional model override from environment
token = os.environ.get("HUGGINGFACE_TOKEN")
if not token:
raise ValueError("Environment variable HUGGINGFACE_TOKEN is not set.")
# Use the Diffusers-ready model repository by default
model_id = os.environ.get(
"WAN_MODEL_ID", "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
)
# Load the pipeline with remote code support
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
pipe = DiffusionPipeline.from_pretrained(
model_id,
torch_dtype=torch_dtype,
trust_remote_code=True,
use_auth_token=token
).to("cuda" if torch.cuda.is_available() else "cpu")
# Enable memory-saving features
pipe.enable_attention_slicing()
# Generation function
def generate_video(image, prompt, num_frames=16, steps=50, guidance_scale=7.5):
output = pipe(
prompt=prompt,
init_image=image,
num_inference_steps=steps,
guidance_scale=guidance_scale,
num_frames=num_frames
)
return output.videos
# Gradio UI
def main():
with gr.Blocks() as demo:
gr.Markdown("# Wan2.1 Image-to-Video Demo")
with gr.Row():
img_in = gr.Image(type="pil", label="Input Image")
txt_p = gr.Textbox(label="Prompt")
btn = gr.Button("Generate Video")
out = gr.Video(label="Generated Video")
btn.click(fn=generate_video, inputs=[img_in, txt_p], outputs=out)
return demo
if __name__ == "__main__":
main().launch()