Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,381 Bytes
024adaf b9f7861 4e84c36 b9f7861 024adaf 4e84c36 b9f7861 024adaf 4e84c36 024adaf 4e84c36 024adaf 4e84c36 024adaf 4e84c36 024adaf 4e84c36 024adaf 4e84c36 024adaf 4e84c36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import os
import gradio as gr
import torch
from diffusers import DiffusionPipeline
# Read token from environment (configured as a Space secret)
token = os.environ.get("HUGGINGFACE_TOKEN")
if token is None:
raise ValueError("Environment variable HUGGINGFACE_TOKEN is not set.")
model_id = "Wan-AI/Wan2.1-I2V-14B-480P"
# Load pipeline directly from the Hub, using the token
pipe = DiffusionPipeline.from_pretrained(
model_id,
torch_dtype=torch.float16,
trust_remote_code=True,
use_auth_token=token
).to("cuda")
# Enable memory-saving features
pipe.enable_attention_slicing()
# Generation function
def generate_video(image, prompt, num_frames=16, steps=50, guidance_scale=7.5):
result = pipe(
prompt=prompt,
init_image=image,
num_inference_steps=steps,
guidance_scale=guidance_scale,
num_frames=num_frames
)
return result.videos
# Gradio UI definition
def main():
with gr.Blocks() as demo:
gr.Markdown("# Wan2.1 Image-to-Video Demo")
with gr.Row():
img_in = gr.Image(type="pil", label="Input Image")
txt_p = gr.Textbox(label="Prompt")
btn = gr.Button("Generate Video")
out = gr.Video(label="Generated Video")
btn.click(fn=generate_video, inputs=[img_in, txt_p], outputs=out)
return demo
if __name__ == "__main__":
main().launch() |