Ahmadzei's picture
added 3 more tables for large emb model
5fa1a76
import evaluate
metric = evaluate.load("accuracy")
model.eval()
for batch in eval_dataloader:
batch = {k: v.to(device) for k, v in batch.items()}
with torch.no_grad():
outputs = model(**batch)
logits = outputs.logits
predictions = torch.argmax(logits, dim=-1)
metric.add_batch(predictions=predictions, references=batch["labels"])
metric.compute()
Additional resources
For more fine-tuning examples, refer to:
🤗 Transformers Examples includes scripts
to train common NLP tasks in PyTorch and TensorFlow.