File size: 545 Bytes
5fa1a76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
import evaluate
metric = evaluate.load("accuracy")
model.eval()
for batch in eval_dataloader:
     batch = {k: v.to(device) for k, v in batch.items()}
     with torch.no_grad():
         outputs = model(**batch)

     logits = outputs.logits
     predictions = torch.argmax(logits, dim=-1)
     metric.add_batch(predictions=predictions, references=batch["labels"])

metric.compute()

Additional resources
For more fine-tuning examples, refer to:

🤗 Transformers Examples includes scripts
  to train common NLP tasks in PyTorch and TensorFlow.