PyLate model based on lightonai/GTE-ModernColBERT-v1

This is a PyLate model finetuned from lightonai/GTE-ModernColBERT-v1. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.

Model Details

Model Description

  • Model Type: PyLate model
  • Base model: lightonai/GTE-ModernColBERT-v1
  • Document Length: 300 tokens
  • Query Length: 32 tokens
  • Output Dimensionality: 128 tokens
  • Similarity Function: MaxSim

Model Sources

Full Model Architecture

ColBERT(
  (0): Transformer({'max_seq_length': 299, 'do_lower_case': False}) with Transformer model: ModernBertModel 
  (1): Dense({'in_features': 768, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
)

Usage

First install the PyLate library:

pip install -U pylate

Retrieval

PyLate provides a streamlined interface to index and retrieve documents using ColBERT models. The index leverages the Voyager HNSW index to efficiently handle document embeddings and enable fast retrieval.

Indexing documents

First, load the ColBERT model and initialize the Voyager index, then encode and index your documents:

from pylate import indexes, models, retrieve

# Step 1: Load the ColBERT model
model = models.ColBERT(
    model_name_or_path=pylate_model_id,
)

# Step 2: Initialize the Voyager index
index = indexes.Voyager(
    index_folder="pylate-index",
    index_name="index",
    override=True,  # This overwrites the existing index if any
)

# Step 3: Encode the documents
documents_ids = ["1", "2", "3"]
documents = ["document 1 text", "document 2 text", "document 3 text"]

documents_embeddings = model.encode(
    documents,
    batch_size=32,
    is_query=False,  # Ensure that it is set to False to indicate that these are documents, not queries
    show_progress_bar=True,
)

# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
index.add_documents(
    documents_ids=documents_ids,
    documents_embeddings=documents_embeddings,
)

Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:

# To load an index, simply instantiate it with the correct folder/name and without overriding it
index = indexes.Voyager(
    index_folder="pylate-index",
    index_name="index",
)

Retrieving top-k documents for queries

Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries. To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:

# Step 1: Initialize the ColBERT retriever
retriever = retrieve.ColBERT(index=index)

# Step 2: Encode the queries
queries_embeddings = model.encode(
    ["query for document 3", "query for document 1"],
    batch_size=32,
    is_query=True,  #  # Ensure that it is set to False to indicate that these are queries
    show_progress_bar=True,
)

# Step 3: Retrieve top-k documents
scores = retriever.retrieve(
    queries_embeddings=queries_embeddings,
    k=10,  # Retrieve the top 10 matches for each query
)

Reranking

If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:

from pylate import rank, models

queries = [
    "query A",
    "query B",
]

documents = [
    ["document A", "document B"],
    ["document 1", "document C", "document B"],
]

documents_ids = [
    [1, 2],
    [1, 3, 2],
]

model = models.ColBERT(
    model_name_or_path=pylate_model_id,
)

queries_embeddings = model.encode(
    queries,
    is_query=True,
)

documents_embeddings = model.encode(
    documents,
    is_query=False,
)

reranked_documents = rank.rerank(
    documents_ids=documents_ids,
    queries_embeddings=queries_embeddings,
    documents_embeddings=documents_embeddings,
)

Evaluation

Metrics

Col BERTTriplet

  • Evaluated with pylate.evaluation.colbert_triplet.ColBERTTripletEvaluator
Metric Value
accuracy 0.9513

Training Details

Training Dataset

Unnamed Dataset

  • Size: 310,935 training samples
  • Columns: query, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    query positive negative
    type string string string
    details
    • min: 6 tokens
    • mean: 24.92 tokens
    • max: 32 tokens
    • min: 4 tokens
    • mean: 20.06 tokens
    • max: 32 tokens
    • min: 4 tokens
    • mean: 24.7 tokens
    • max: 32 tokens
  • Samples:
    query positive negative
    The primary objective of enacting a inheritance tax is to mitigate economic inequality and redistribute wealth among the poorer sections of society, although various empirical studies have demonstrated a lack of correlation between the two. The principal goal of establishing estate duties as a form of taxation is not solely to address the problem of economic disparity, but more importantly, to redistribute wealth in an equitable manner so as to reduce the vast gap between the rich and the relatively poor segments of the population. In a bid to abide by international agreements and world peaceful coexistence standards, most European nations have set up strict fiscal policies ensuring a strong relationship with neighboring countries, including strategic partnerships to promote tourism, as much as quotas to restrict immigration and asylum seekers.
    Usability Evaluation Report for the New Web Application
    Introduction
    This usability evaluation was conducted to identify issues related to user experience and provide recommendations for improving the overall usability of the new web application. The evaluation focused on the login and registration process, navigation, and search functionality.
    Methodology
    The evaluation consisted of user testing and heuristic evaluation. A total of five participants were recruited to participate in the user testing, and each participant was asked to complete several tasks using the web application. The participants' interactions with the application were observed and recorded. Heuristic evaluation was conducted based on a set of well-established usability principles to identify potential usability issues in the application's design and functionality.
    Results
    During the user testing, several usability issues were identified. These included difficulties in locating the login and registration features, p...
    Design Document: Home and Landing Page Redesign for New Web Application
    Executive Summary
    As part of an ongoing effort to improve the user experience and engagement for the new web application, this project focuses on the redesign of the home and landing page. The new design will address usability issues identified in a previous evaluation, make the application more appealing to users, and help drive sales and conversions. The following report includes the design requirements, a full design specification, and guidance for implementation.
    Goals and Objectives
    The main goals of this project include: to redesign the home and landing pages to give users an improved first impression of the application; to improve task completion times and create a seamless user experience; to increase conversion rates by reducing bounce rates and making it easier for users to find the information they need.
    Scope of Work
    The redesign of the home and landing pages includes: creating a clear visual hierarchy ...
    Designing Effective User Interfaces for Virtual Reality ApplicationsIntroductionVirtual reality (VR) technology has been rapidly advancing in recent years, with applications in various fields such as gaming, education, and healthcare. As VR continues to grow in popularity, the need for effective user interfaces has become increasingly important. A well-designed user interface can enhance the overall VR experience, while a poorly designed one can lead to frustration and disorientation.Principles of Effective VR User Interface Design1. Intuitive Interaction: The primary goal of a VR user interface is to provide an intuitive and natural way for users to interact with the virtual environment. This can be achieved through the use of gestures, voice commands, or other innovative methods.2. Visual Feedback: Visual feedback is crucial in VR, as it helps users understand the consequences of their actions. This can be in the form of animations, particles, or other visual effects that provide a c...
    The manager of the local conservation society recently explained measures for sustainable wildlife preservation. The conservation society's manager recently explained measures for preserving wildlife sustainably. After explaining university education requirements, the career counsellor also talked about wildlife preservation jobs.
  • Loss: pylate.losses.contrastive.Contrastive

Evaluation Dataset

Unnamed Dataset

  • Size: 34,549 evaluation samples
  • Columns: query, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    query positive negative
    type string string string
    details
    • min: 6 tokens
    • mean: 24.32 tokens
    • max: 32 tokens
    • min: 4 tokens
    • mean: 19.37 tokens
    • max: 32 tokens
    • min: 4 tokens
    • mean: 24.12 tokens
    • max: 32 tokens
  • Samples:
    query positive negative
    In a magical forest, there lived a group of animals that loved to dance under the stars. They danced to the rhythm of the crickets and felt the magic of the night. In a magical forest, there lived a group of animals that loved to dance under the stars on a lovely night. They danced to the rhythm of the crickets. The forest was a wonderful place where animals could sing and dance to the sounds of nature. Some liked the rustling of leaves, while others liked the buzzing of bees. But they all loved the music of a babbling brook.
    Given this reasoning-intensive query, find relevant documents that could help answer the question. food_percent/2063AApplicationsLeontiefModels_149.txt The use of matrix equations in computer graphics is gaining significant attention in recent years. In computer-aided design (CAD), matrix equations play a crucial role in transforming 2D and 3D objects. For instance, when designing a car model, the CAD software uses matrix equations to rotate, translate, and scale the object. The transformation matrix is a 4x4 matrix that stores the coordinates of the object and performs the required operations. Similarly, in computer gaming, matrix equations are used to animate characters and objects in 3D space. The game developers use transformation matrices to create realistic movements and interactions between objects. However, the complexity of these transformations leads to a high computational cost, making it difficult to achieve real-time rendering. To address this challenge, researchers are exploring the use of machine learning algorithms to optimize the transformation process. For example, a research paper titled 'Matrix Equation-Based 6-DoF...
    A study found that the use of virtual reality in therapy sessions can have a positive effect on mental health by reducing stress and anxiety. A therapy session using virtual reality can significantly reduce patient stress and anxiety. Research on artificial intelligence in mental health has also led to the innovation of virtual robots for therapy.
  • Loss: pylate.losses.contrastive.Contrastive

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 32
  • gradient_accumulation_steps: 2
  • learning_rate: 2e-05
  • weight_decay: 0.01
  • num_train_epochs: 10
  • warmup_steps: 100
  • fp16: True
  • remove_unused_columns: False

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 2
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.01
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 10
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 100
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: False
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss accuracy
0.0051 50 4.8488 - -
0.0103 100 2.2402 - -
0.0154 150 1.8204 - -
0.0206 200 1.7765 - -
0.0257 250 1.7482 - -
0 0 - - 0.9227
0.0257 250 - 1.1625 -
0.0309 300 1.7821 - -
0.0360 350 1.6761 - -
0.0412 400 1.4887 - -
0.0463 450 1.6001 - -
0.0515 500 1.7426 - -
0 0 - - 0.9317
0.0515 500 - 1.1088 -
0.0566 550 1.5562 - -
0.0617 600 1.6811 - -
0.0669 650 1.5994 - -
0.0720 700 1.5981 - -
0.0772 750 1.5713 - -
0 0 - - 0.9369
0.0772 750 - 1.0817 -
0.0823 800 1.6516 - -
0.0875 850 1.5768 - -
0.0926 900 1.5902 - -
0.0978 950 1.4613 - -
0.1029 1000 1.6295 - -
0 0 - - 0.9374
0.1029 1000 - 1.0677 -
0.1081 1050 1.5301 - -
0.1132 1100 1.6072 - -
0.1183 1150 1.4644 - -
0.1235 1200 1.6331 - -
0.1286 1250 1.5464 - -
0 0 - - 0.9408
0.1286 1250 - 1.0547 -
0.1338 1300 1.5406 - -
0.1389 1350 1.5471 - -
0.1441 1400 1.6685 - -
0.1492 1450 1.5644 - -
0.1544 1500 1.6587 - -
0 0 - - 0.9420
0.1544 1500 - 1.0590 -
0.1595 1550 1.5793 - -
0.1647 1600 1.4877 - -
0.1698 1650 1.5781 - -
0.1750 1700 1.5081 - -
0.1801 1750 1.5434 - -
0 0 - - 0.9396
0.1801 1750 - 1.0564 -
0.1852 1800 1.4617 - -
0.1904 1850 1.4531 - -
0.1955 1900 1.5713 - -
0.2007 1950 1.5166 - -
0.2058 2000 1.4771 - -
0 0 - - 0.9431
0.2058 2000 - 1.0344 -
0.2110 2050 1.4706 - -
0.2161 2100 1.5276 - -
0.2213 2150 1.4002 - -
0.2264 2200 1.5605 - -
0.2316 2250 1.4871 - -
0 0 - - 0.9441
0.2316 2250 - 1.0355 -
0.2367 2300 1.56 - -
0.2418 2350 1.4322 - -
0.2470 2400 1.4682 - -
0.2521 2450 1.4375 - -
0.2573 2500 1.4499 - -
0 0 - - 0.9434
0.2573 2500 - 1.0306 -
0.2624 2550 1.5088 - -
0.2676 2600 1.5577 - -
0.2727 2650 1.4221 - -
0.2779 2700 1.5105 - -
0.2830 2750 1.4681 - -
0 0 - - 0.9453
0.2830 2750 - 1.0219 -
0.2882 2800 1.4354 - -
0.2933 2850 1.4982 - -
0.2984 2900 1.5374 - -
0.3036 2950 1.4769 - -
0.3087 3000 1.5767 - -
0 0 - - 0.9450
0.3087 3000 - 1.0168 -
0.3139 3050 1.3712 - -
0.3190 3100 1.4979 - -
0.3242 3150 1.4633 - -
0.3293 3200 1.5025 - -
0.3345 3250 1.5206 - -
0 0 - - 0.9457
0.3345 3250 - 1.0161 -
0.3396 3300 1.5119 - -
0.3448 3350 1.6285 - -
0.3499 3400 1.4421 - -
0.3550 3450 1.4866 - -
0.3602 3500 1.4651 - -
0 0 - - 0.9465
0.3602 3500 - 1.0085 -
0.3653 3550 1.3777 - -
0.3705 3600 1.5256 - -
0.3756 3650 1.358 - -
0.3808 3700 1.4384 - -
0.3859 3750 1.4847 - -
0 0 - - 0.9461
0.3859 3750 - 1.0093 -
0.3911 3800 1.327 - -
0.3962 3850 1.4463 - -
0.4014 3900 1.3179 - -
0.4065 3950 1.4312 - -
0.4116 4000 1.4179 - -
0 0 - - 0.9460
0.4116 4000 - 1.0145 -
0.4168 4050 1.4828 - -
0.4219 4100 1.4568 - -
0.4271 4150 1.4921 - -
0.4322 4200 1.4485 - -
0.4374 4250 1.4908 - -
0 0 - - 0.9478
0.4374 4250 - 1.0121 -
0.4425 4300 1.295 - -
0.4477 4350 1.4687 - -
0.4528 4400 1.3846 - -
0.4580 4450 1.4704 - -
0.4631 4500 1.3646 - -
0 0 - - 0.9480
0.4631 4500 - 1.0056 -
0.4683 4550 1.4779 - -
0.4734 4600 1.4581 - -
0.4785 4650 1.3786 - -
0.4837 4700 1.56 - -
0.4888 4750 1.4334 - -
0 0 - - 0.9475
0.4888 4750 - 1.0032 -
0.4940 4800 1.3877 - -
0.4991 4850 1.3485 - -
0.5043 4900 1.4509 - -
0.5094 4950 1.3693 - -
0.5146 5000 1.5226 - -
0 0 - - 0.9477
0.5146 5000 - 0.9976 -
0.5197 5050 1.4423 - -
0.5249 5100 1.4191 - -
0.5300 5150 1.5109 - -
0.5351 5200 1.4509 - -
0.5403 5250 1.4351 - -
0 0 - - 0.9486
0.5403 5250 - 1.0001 -
0.5454 5300 1.3868 - -
0.5506 5350 1.4339 - -
0.5557 5400 1.365 - -
0.5609 5450 1.44 - -
0.5660 5500 1.2895 - -
0 0 - - 0.9491
0.5660 5500 - 1.0065 -
0.5712 5550 1.4253 - -
0.5763 5600 1.4438 - -
0.5815 5650 1.3543 - -
0.5866 5700 1.5587 - -
0.5917 5750 1.342 - -
0 0 - - 0.9488
0.5917 5750 - 0.9927 -
0.5969 5800 1.4503 - -
0.6020 5850 1.4045 - -
0.6072 5900 1.4092 - -
0.6123 5950 1.3318 - -
0.6175 6000 1.416 - -
0 0 - - 0.9504
0.6175 6000 - 0.9910 -
0.6226 6050 1.5132 - -
0.6278 6100 1.3275 - -
0.6329 6150 1.4595 - -
0.6381 6200 1.5112 - -
0.6432 6250 1.4435 - -
0 0 - - 0.9515
0.6432 6250 - 0.9928 -
0.6483 6300 1.4268 - -
0.6535 6350 1.5071 - -
0.6586 6400 1.3817 - -
0.6638 6450 1.5101 - -
0.6689 6500 1.4014 - -
0 0 - - 0.9490
0.6689 6500 - 0.9954 -
0.6741 6550 1.2797 - -
0.6792 6600 1.3829 - -
0.6844 6650 1.4907 - -
0.6895 6700 1.4098 - -
0.6947 6750 1.482 - -
0 0 - - 0.9492
0.6947 6750 - 0.9937 -
0.6998 6800 1.3779 - -
0.7050 6850 1.3791 - -
0.7101 6900 1.5183 - -
0.7152 6950 1.4022 - -
0.7204 7000 1.544 - -
0 0 - - 0.9508
0.7204 7000 - 0.9935 -
0.7255 7050 1.4566 - -
0.7307 7100 1.4641 - -
0.7358 7150 1.4208 - -
0.7410 7200 1.3391 - -
0.7461 7250 1.5002 - -
0 0 - - 0.9497
0.7461 7250 - 0.9861 -
0.7513 7300 1.2985 - -
0.7564 7350 1.5496 - -
0.7616 7400 1.5046 - -
0.7667 7450 1.3687 - -
0.7718 7500 1.3841 - -
0 0 - - 0.9501
0.7718 7500 - 0.9868 -
0.7770 7550 1.3996 - -
0.7821 7600 1.5112 - -
0.7873 7650 1.4335 - -
0.7924 7700 1.3867 - -
0.7976 7750 1.3865 - -
0 0 - - 0.9511
0.7976 7750 - 0.9863 -
0.8027 7800 1.4039 - -
0.8079 7850 1.379 - -
0.8130 7900 1.3459 - -
0.8182 7950 1.3996 - -
0.8233 8000 1.4151 - -
0 0 - - 0.9511
0.8233 8000 - 0.9822 -
0.8284 8050 1.3745 - -
0.8336 8100 1.4404 - -
0.8387 8150 1.4776 - -
0.8439 8200 1.398 - -
0.8490 8250 1.4482 - -
0 0 - - 0.9506
0.8490 8250 - 0.9803 -
0.8542 8300 1.4551 - -
0.8593 8350 1.46 - -
0.8645 8400 1.5179 - -
0.8696 8450 1.4067 - -
0.8748 8500 1.4393 - -
0 0 - - 0.9504
0.8748 8500 - 0.9809 -
0.8799 8550 1.4995 - -
0.8850 8600 1.4077 - -
0.8902 8650 1.4088 - -
0.8953 8700 1.3464 - -
0.9005 8750 1.3455 - -
0 0 - - 0.9506
0.9005 8750 - 0.9797 -
0.9056 8800 1.5172 - -
0.9108 8850 1.3922 - -
0.9159 8900 1.3645 - -
0.9211 8950 1.3627 - -
0.9262 9000 1.3896 - -
0 0 - - 0.9506
0.9262 9000 - 0.9806 -
0.9314 9050 1.433 - -
0.9365 9100 1.4678 - -
0.9416 9150 1.3206 - -
0.9468 9200 1.4589 - -
0.9519 9250 1.3494 - -
0 0 - - 0.9509
0.9519 9250 - 0.9761 -
0.9571 9300 1.3768 - -
0.9622 9350 1.4449 - -
0.9674 9400 1.4187 - -
0.9725 9450 1.3046 - -
0.9777 9500 1.3586 - -
0 0 - - 0.9512
0.9777 9500 - 0.9817 -
0.9828 9550 1.4631 - -
0.9880 9600 1.3113 - -
0.9931 9650 1.2972 - -
0.9983 9700 1.3793 - -
1.0034 9750 1.1729 - -
0 0 - - 0.9509
1.0034 9750 - 0.9847 -
1.0085 9800 1.2009 - -
1.0137 9850 1.2576 - -
1.0188 9900 1.3483 - -
1.0240 9950 1.2609 - -
1.0291 10000 1.3099 - -
0 0 - - 0.9513
1.0291 10000 - 0.9895 -
1.0343 10050 1.2224 - -
1.0394 10100 1.3552 - -
1.0446 10150 1.3508 - -
1.0497 10200 1.3242 - -
1.0549 10250 1.2287 - -
0 0 - - 0.9512
1.0549 10250 - 0.9977 -
1.0600 10300 1.2863 - -
1.0651 10350 1.2377 - -
1.0703 10400 1.3058 - -
1.0754 10450 1.3013 - -
1.0806 10500 1.3233 - -
0 0 - - 0.9488
1.0806 10500 - 0.9948 -
1.0857 10550 1.334 - -
1.0909 10600 1.246 - -
1.0960 10650 1.2298 - -
1.1012 10700 1.2016 - -
1.1063 10750 1.3035 - -
0 0 - - 0.9506
1.1063 10750 - 0.9947 -
1.1115 10800 1.2457 - -
1.1166 10850 1.2882 - -
1.1217 10900 1.2365 - -
1.1269 10950 1.19 - -
1.1320 11000 1.2377 - -
0 0 - - 0.9511
1.1320 11000 - 0.9915 -
1.1372 11050 1.3028 - -
1.1423 11100 1.319 - -
1.1475 11150 1.3315 - -
1.1526 11200 1.2161 - -
1.1578 11250 1.3555 - -
0 0 - - 0.9511
1.1578 11250 - 0.9902 -
1.1629 11300 1.1874 - -
1.1681 11350 1.2373 - -
1.1732 11400 1.2474 - -
1.1783 11450 1.2838 - -
1.1835 11500 1.2242 - -
0 0 - - 0.9518
1.1835 11500 - 0.9927 -
1.1886 11550 1.3123 - -
1.1938 11600 1.2874 - -
1.1989 11650 1.2568 - -
1.2041 11700 1.2526 - -
1.2092 11750 1.347 - -
0 0 - - 0.9509
1.2092 11750 - 0.9883 -
1.2144 11800 1.3098 - -
1.2195 11850 1.2541 - -
1.2247 11900 1.2791 - -
1.2298 11950 1.2333 - -
1.2349 12000 1.3827 - -
0 0 - - 0.9507
1.2349 12000 - 0.9943 -
1.2401 12050 1.2732 - -
1.2452 12100 1.2993 - -
1.2504 12150 1.2947 - -
1.2555 12200 1.3001 - -
1.2607 12250 1.2957 - -
0 0 - - 0.9514
1.2607 12250 - 0.9865 -
1.2658 12300 1.1393 - -
1.2710 12350 1.2996 - -
1.2761 12400 1.3218 - -
1.2813 12450 1.2138 - -
1.2864 12500 1.1731 - -
0 0 - - 0.9510
1.2864 12500 - 0.9964 -
1.2916 12550 1.3326 - -
1.2967 12600 1.3575 - -
1.3018 12650 1.2948 - -
1.3070 12700 1.2921 - -
1.3121 12750 1.3052 - -
0 0 - - 0.9509
1.3121 12750 - 0.9840 -
1.3173 12800 1.3662 - -
1.3224 12850 1.3673 - -
1.3276 12900 1.3006 - -
1.3327 12950 1.4217 - -
1.3379 13000 1.1608 - -
0 0 - - 0.9520
1.3379 13000 - 0.9848 -
1.3430 13050 1.2066 - -
1.3482 13100 1.408 - -
1.3533 13150 1.3574 - -
1.3584 13200 1.3171 - -
1.3636 13250 1.3188 - -
0 0 - - 0.9502
1.3636 13250 - 0.9888 -
1.3687 13300 1.299 - -
1.3739 13350 1.3015 - -
1.3790 13400 1.3159 - -
1.3842 13450 1.2139 - -
1.3893 13500 1.2855 - -
0 0 - - 0.9514
1.3893 13500 - 0.9957 -
1.3945 13550 1.2705 - -
1.3996 13600 1.3099 - -
1.4048 13650 1.3144 - -
1.4099 13700 1.2948 - -
1.4150 13750 1.3313 - -
0 0 - - 0.9512
1.4150 13750 - 0.9910 -
1.4202 13800 1.3473 - -
1.4253 13850 1.2037 - -
1.4305 13900 1.3059 - -
1.4356 13950 1.3763 - -
1.4408 14000 1.2606 - -
0 0 - - 0.9523
1.4408 14000 - 0.9876 -
1.4459 14050 1.2394 - -
1.4511 14100 1.219 - -
1.4562 14150 1.3501 - -
1.4614 14200 1.2664 - -
1.4665 14250 1.2704 - -
0 0 - - 0.9513
1.4665 14250 - 0.9945 -
1.4716 14300 1.2332 - -
1.4768 14350 1.2286 - -
1.4819 14400 1.2123 - -
1.4871 14450 1.2437 - -
1.4922 14500 1.2292 - -
0 0 - - 0.9502
1.4922 14500 - 0.9886 -
1.4974 14550 1.3007 - -
1.5025 14600 1.308 - -
1.5077 14650 1.174 - -
1.5128 14700 1.2648 - -
1.5180 14750 1.2533 - -
0 0 - - 0.9517
1.5180 14750 - 0.9885 -
1.5231 14800 1.2576 - -
1.5282 14850 1.3659 - -
1.5334 14900 1.298 - -
1.5385 14950 1.2723 - -
1.5437 15000 1.3099 - -
0 0 - - 0.9518
1.5437 15000 - 0.9875 -
1.5488 15050 1.2984 - -
1.5540 15100 1.2128 - -
1.5591 15150 1.2689 - -
1.5643 15200 1.2516 - -
1.5694 15250 1.3028 - -
0 0 - - 0.9523
1.5694 15250 - 0.9856 -
1.5746 15300 1.3619 - -
1.5797 15350 1.3524 - -
1.5849 15400 1.1749 - -
1.5900 15450 1.205 - -
1.5951 15500 1.297 - -
0 0 - - 0.9513
1.5951 15500 - 0.9780 -
1.6003 15550 1.2469 - -
1.6054 15600 1.2285 - -
1.6106 15650 1.2963 - -
1.6157 15700 1.2406 - -
1.6209 15750 1.3049 - -
0 0 - - 0.9512
1.6209 15750 - 0.9873 -
1.6260 15800 1.2174 - -
1.6312 15850 1.2789 - -
1.6363 15900 1.289 - -
1.6415 15950 1.3242 - -
1.6466 16000 1.2974 - -
0 0 - - 0.9522
1.6466 16000 - 0.9755 -
1.6517 16050 1.2741 - -
1.6569 16100 1.1625 - -
1.6620 16150 1.2795 - -
1.6672 16200 1.2301 - -
1.6723 16250 1.2348 - -
0 0 - - 0.9528
1.6723 16250 - 0.9801 -
1.6775 16300 1.2408 - -
1.6826 16350 1.2477 - -
1.6878 16400 1.3386 - -
1.6929 16450 1.2346 - -
1.6981 16500 1.2904 - -
0 0 - - 0.9520
1.6981 16500 - 0.9906 -
1.7032 16550 1.2947 - -
1.7083 16600 1.2572 - -
1.7135 16650 1.2738 - -
1.7186 16700 1.2686 - -
1.7238 16750 1.4041 - -
0 0 - - 0.9528
1.7238 16750 - 0.9791 -
1.7289 16800 1.2935 - -
1.7341 16850 1.2501 - -
1.7392 16900 1.3208 - -
1.7444 16950 1.2486 - -
1.7495 17000 1.2587 - -
0 0 - - 0.9520
1.7495 17000 - 0.9862 -
1.7547 17050 1.3325 - -
1.7598 17100 1.3104 - -
1.7649 17150 1.2504 - -
1.7701 17200 1.3153 - -
1.7752 17250 1.328 - -
0 0 - - 0.9530
1.7752 17250 - 0.9803 -
1.7804 17300 1.3417 - -
1.7855 17350 1.2486 - -
1.7907 17400 1.2869 - -
1.7958 17450 1.3599 - -
1.8010 17500 1.2822 - -
0 0 - - 0.9526
1.8010 17500 - 0.9847 -
1.8061 17550 1.3001 - -
1.8113 17600 1.0848 - -
1.8164 17650 1.3171 - -
1.8215 17700 1.3387 - -
1.8267 17750 1.2401 - -
0 0 - - 0.9528
1.8267 17750 - 0.9804 -
1.8318 17800 1.2979 - -
1.8370 17850 1.2222 - -
1.8421 17900 1.27 - -
1.8473 17950 1.3109 - -
1.8524 18000 1.2306 - -
0 0 - - 0.9537
1.8524 18000 - 0.9876 -
1.8576 18050 1.1878 - -
1.8627 18100 1.2398 - -
1.8679 18150 1.2576 - -
1.8730 18200 1.1579 - -
1.8782 18250 1.2889 - -
0 0 - - 0.9519
1.8782 18250 - 0.9859 -
1.8833 18300 1.3331 - -
1.8884 18350 1.2957 - -
1.8936 18400 1.2286 - -
1.8987 18450 1.2513 - -
1.9039 18500 1.1702 - -
0 0 - - 0.9541
1.9039 18500 - 0.9840 -
1.9090 18550 1.3181 - -
1.9142 18600 1.1976 - -
1.9193 18650 1.3623 - -
1.9245 18700 1.2594 - -
1.9296 18750 1.2902 - -
0 0 - - 0.9522
1.9296 18750 - 0.9844 -
1.9348 18800 1.3283 - -
1.9399 18850 1.2987 - -
1.9450 18900 1.1987 - -
1.9502 18950 1.2385 - -
1.9553 19000 1.2772 - -
0 0 - - 0.9533
1.9553 19000 - 0.9861 -
1.9605 19050 1.1906 - -
1.9656 19100 1.3041 - -
1.9708 19150 1.2345 - -
1.9759 19200 1.2586 - -
1.9811 19250 1.196 - -
0 0 - - 0.9522
1.9811 19250 - 0.9835 -
1.9862 19300 1.2872 - -
1.9914 19350 1.2449 - -
1.9965 19400 1.2435 - -
2.0016 19450 1.3096 - -
2.0068 19500 1.1697 - -
0 0 - - 0.9514
2.0068 19500 - 1.0036 -
2.0119 19550 1.0556 - -
2.0171 19600 1.1592 - -
2.0222 19650 1.1808 - -
2.0274 19700 1.141 - -
2.0325 19750 1.1139 - -
0 0 - - 0.9517
2.0325 19750 - 1.0205 -
2.0377 19800 1.1959 - -
2.0428 19850 1.0762 - -
2.0480 19900 1.3522 - -
2.0531 19950 1.1175 - -
2.0582 20000 1.178 - -
0 0 - - 0.9512
2.0582 20000 - 1.0184 -
2.0634 20050 1.1416 - -
2.0685 20100 1.1523 - -
2.0737 20150 1.2561 - -
2.0788 20200 1.119 - -
2.0840 20250 1.095 - -
0 0 - - 0.9504
2.0840 20250 - 1.0155 -
2.0891 20300 1.1432 - -
2.0943 20350 1.1455 - -
2.0994 20400 1.0913 - -
2.1046 20450 1.1671 - -
2.1097 20500 1.2776 - -
0 0 - - 0.9514
2.1097 20500 - 1.0334 -
2.1149 20550 1.3092 - -
2.1200 20600 1.1981 - -
2.1251 20650 1.1399 - -
2.1303 20700 1.0976 - -
2.1354 20750 1.1335 - -
0 0 - - 0.9518
2.1354 20750 - 1.0136 -
2.1406 20800 1.1567 - -
2.1457 20850 1.2536 - -
2.1509 20900 1.1717 - -
2.1560 20950 1.1433 - -
2.1612 21000 1.1885 - -
0 0 - - 0.9512
2.1612 21000 - 1.0185 -
2.1663 21050 1.0543 - -
2.1715 21100 1.1122 - -
2.1766 21150 1.17 - -
2.1817 21200 1.0757 - -
2.1869 21250 1.3008 - -
0 0 - - 0.9506
2.1869 21250 - 1.0161 -
2.1920 21300 1.1723 - -
2.1972 21350 1.2517 - -
2.2023 21400 1.1834 - -
2.2075 21450 1.1284 - -
2.2126 21500 1.28 - -
0 0 - - 0.9507
2.2126 21500 - 1.0217 -
2.2178 21550 1.2478 - -
2.2229 21600 1.1798 - -
2.2281 21650 1.1218 - -
2.2332 21700 1.2787 - -
2.2383 21750 1.1254 - -
0 0 - - 0.9508
2.2383 21750 - 1.0312 -
2.2435 21800 1.2375 - -
2.2486 21850 1.1074 - -
2.2538 21900 1.0927 - -
2.2589 21950 1.1691 - -
2.2641 22000 1.1703 - -
0 0 - - 0.9499
2.2641 22000 - 1.0275 -
2.2692 22050 1.2158 - -
2.2744 22100 1.1026 - -
2.2795 22150 1.0644 - -
2.2847 22200 1.1092 - -
2.2898 22250 1.1686 - -
0 0 - - 0.9512
2.2898 22250 - 1.0343 -
2.2949 22300 1.2711 - -
2.3001 22350 1.2942 - -
2.3052 22400 1.2073 - -
2.3104 22450 1.2131 - -
2.3155 22500 1.1445 - -
0 0 - - 0.9517
2.3155 22500 - 1.0128 -
2.3207 22550 1.1553 - -
2.3258 22600 1.1512 - -
2.3310 22650 1.2069 - -
2.3361 22700 1.1345 - -
2.3413 22750 1.1681 - -
0 0 - - 0.9509
2.3413 22750 - 1.0101 -
2.3464 22800 1.1372 - -
2.3515 22850 1.1393 - -
2.3567 22900 1.1327 - -
2.3618 22950 1.0903 - -
2.3670 23000 1.1354 - -
0 0 - - 0.9513
2.3670 23000 - 1.0173 -
2.3721 23050 1.2517 - -
2.3773 23100 1.0634 - -
2.3824 23150 1.2095 - -
2.3876 23200 1.1686 - -
2.3927 23250 1.1063 - -
0 0 - - 0.9517
2.3927 23250 - 1.0243 -
2.3979 23300 1.1309 - -
2.4030 23350 1.1869 - -
2.4082 23400 1.1743 - -
2.4133 23450 1.1001 - -
2.4184 23500 1.1696 - -
0 0 - - 0.9525
2.4184 23500 - 1.0315 -
2.4236 23550 1.1493 - -
2.4287 23600 1.1486 - -
2.4339 23650 1.2302 - -
2.4390 23700 1.1427 - -
2.4442 23750 1.2123 - -
0 0 - - 0.9510
2.4442 23750 - 1.0297 -
2.4493 23800 1.1169 - -
2.4545 23850 1.1688 - -
2.4596 23900 1.0506 - -
2.4648 23950 1.1965 - -
2.4699 24000 1.1253 - -
0 0 - - 0.9508
2.4699 24000 - 1.0238 -
2.4750 24050 1.1957 - -
2.4802 24100 1.1395 - -
2.4853 24150 1.1238 - -
2.4905 24200 1.1342 - -
2.4956 24250 1.1703 - -
0 0 - - 0.9506
2.4956 24250 - 1.0219 -
2.5008 24300 1.0947 - -
2.5059 24350 1.1281 - -
2.5111 24400 1.1029 - -
2.5162 24450 1.1784 - -
2.5214 24500 1.101 - -
0 0 - - 0.9528
2.5214 24500 - 1.0267 -
2.5265 24550 1.1231 - -
2.5316 24600 1.1364 - -
2.5368 24650 1.1778 - -
2.5419 24700 1.1089 - -
2.5471 24750 1.1626 - -
0 0 - - 0.9508
2.5471 24750 - 1.0254 -
2.5522 24800 1.2019 - -
2.5574 24850 1.1503 - -
2.5625 24900 1.1697 - -
2.5677 24950 1.0921 - -
2.5728 25000 1.3136 - -
0 0 - - 0.9513
2.5728 25000 - 1.0222 -

Framework Versions

  • Python: 3.12.4
  • Sentence Transformers: 4.0.2
  • PyLate: 1.2.0
  • Transformers: 4.48.2
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.7.0
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084"
}

PyLate

@misc{PyLate,
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
author={Chaffin, Antoine and Sourty, Raphaël},
url={https://github.com/lightonai/pylate},
year={2024}
}
Downloads last month
4
Safetensors
Model size
149M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for souvickdascmsa019/colbert_reasonir_v2

Evaluation results