wav2vec2-large-xls-r-kurmanji_aug-telephone_v5
This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.2454
- Wer: 0.6290
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 25
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
7.815 | 0.1443 | 200 | 5.5186 | 1.0 |
3.3411 | 0.2887 | 400 | 3.3207 | 1.0 |
3.1552 | 0.4330 | 600 | 3.0841 | 1.0 |
3.0904 | 0.5773 | 800 | 3.0660 | 1.0 |
3.0635 | 0.7216 | 1000 | 3.0024 | 1.0 |
2.7642 | 0.8660 | 1200 | 2.5705 | 0.9995 |
1.9992 | 1.0101 | 1400 | 1.9583 | 0.9515 |
1.8396 | 1.1544 | 1600 | 1.7276 | 0.8935 |
1.765 | 1.2988 | 1800 | 1.6737 | 0.8551 |
1.7256 | 1.4431 | 2000 | 1.5843 | 0.8350 |
1.6413 | 1.5874 | 2200 | 1.5684 | 0.8216 |
1.5743 | 1.7317 | 2400 | 1.5523 | 0.8149 |
1.5836 | 1.8761 | 2600 | 1.4723 | 0.8035 |
1.4436 | 2.0202 | 2800 | 1.5032 | 0.7954 |
1.5497 | 2.1645 | 3000 | 1.4220 | 0.7815 |
1.5002 | 2.3089 | 3200 | 1.4112 | 0.7741 |
1.5095 | 2.4532 | 3400 | 1.4244 | 0.7685 |
1.5096 | 2.5975 | 3600 | 1.3701 | 0.7705 |
1.4866 | 2.7418 | 3800 | 1.3748 | 0.7646 |
1.3959 | 2.8862 | 4000 | 1.4268 | 0.7681 |
1.5534 | 3.0303 | 4200 | 1.3444 | 0.7613 |
1.4359 | 3.1746 | 4400 | 1.3694 | 0.7424 |
1.3374 | 3.3190 | 4600 | 1.3692 | 0.7405 |
1.3404 | 3.4633 | 4800 | 1.3744 | 0.7427 |
1.4218 | 3.6076 | 5000 | 1.3273 | 0.7338 |
1.3039 | 3.7519 | 5200 | 1.3755 | 0.7331 |
1.3425 | 3.8963 | 5400 | 1.3124 | 0.7279 |
1.4135 | 4.0404 | 5600 | 1.3247 | 0.7223 |
1.3104 | 4.1847 | 5800 | 1.3698 | 0.7221 |
1.3563 | 4.3291 | 6000 | 1.3019 | 0.7176 |
1.2269 | 4.4734 | 6200 | 1.3040 | 0.7135 |
1.2845 | 4.6177 | 6400 | 1.3283 | 0.7189 |
1.2872 | 4.7620 | 6600 | 1.3023 | 0.7143 |
1.4382 | 4.9064 | 6800 | 1.3155 | 0.7165 |
1.388 | 5.0505 | 7000 | 1.2720 | 0.7055 |
1.3685 | 5.1948 | 7200 | 1.2953 | 0.7068 |
1.2421 | 5.3392 | 7400 | 1.2655 | 0.7068 |
1.2857 | 5.4835 | 7600 | 1.2946 | 0.6995 |
1.2746 | 5.6278 | 7800 | 1.2790 | 0.6980 |
1.2232 | 5.7721 | 8000 | 1.2647 | 0.6957 |
1.2888 | 5.9165 | 8200 | 1.2688 | 0.6923 |
1.264 | 6.0606 | 8400 | 1.2880 | 0.6947 |
1.2393 | 6.2049 | 8600 | 1.2652 | 0.6920 |
1.2347 | 6.3493 | 8800 | 1.3297 | 0.6957 |
1.2623 | 6.4936 | 9000 | 1.2662 | 0.6880 |
1.2888 | 6.6379 | 9200 | 1.2479 | 0.6955 |
1.2617 | 6.7822 | 9400 | 1.2539 | 0.6905 |
1.2417 | 6.9266 | 9600 | 1.2786 | 0.6814 |
1.303 | 7.0707 | 9800 | 1.2602 | 0.6845 |
1.1906 | 7.2150 | 10000 | 1.2565 | 0.6824 |
1.1864 | 7.3594 | 10200 | 1.2617 | 0.6849 |
1.1854 | 7.5037 | 10400 | 1.2731 | 0.6812 |
1.1525 | 7.6480 | 10600 | 1.2272 | 0.6922 |
1.2142 | 7.7924 | 10800 | 1.2500 | 0.6798 |
1.247 | 7.9367 | 11000 | 1.2556 | 0.6816 |
1.1305 | 8.0808 | 11200 | 1.2819 | 0.6838 |
1.1322 | 8.2251 | 11400 | 1.3057 | 0.6858 |
1.1797 | 8.3695 | 11600 | 1.2393 | 0.6769 |
1.1337 | 8.5138 | 11800 | 1.2620 | 0.6782 |
1.2728 | 8.6581 | 12000 | 1.2422 | 0.6727 |
1.1648 | 8.8025 | 12200 | 1.2427 | 0.6766 |
1.2013 | 8.9468 | 12400 | 1.2361 | 0.6730 |
1.1283 | 9.0909 | 12600 | 1.2718 | 0.6801 |
1.197 | 9.2353 | 12800 | 1.2518 | 0.6751 |
1.1701 | 9.3796 | 13000 | 1.2475 | 0.6676 |
1.1722 | 9.5239 | 13200 | 1.2492 | 0.6680 |
1.1057 | 9.6682 | 13400 | 1.2268 | 0.6693 |
1.2214 | 9.8126 | 13600 | 1.2230 | 0.6636 |
1.1606 | 9.9569 | 13800 | 1.2294 | 0.6668 |
1.2363 | 10.1010 | 14000 | 1.2762 | 0.6740 |
1.1314 | 10.2454 | 14200 | 1.2585 | 0.6670 |
1.1285 | 10.3897 | 14400 | 1.2381 | 0.6595 |
1.1105 | 10.5340 | 14600 | 1.2270 | 0.6648 |
1.1566 | 10.6783 | 14800 | 1.2133 | 0.6629 |
1.1405 | 10.8227 | 15000 | 1.2194 | 0.6627 |
1.1321 | 10.9670 | 15200 | 1.2274 | 0.6629 |
1.1513 | 11.1111 | 15400 | 1.2163 | 0.6587 |
1.0144 | 11.2555 | 15600 | 1.2394 | 0.6596 |
1.1714 | 11.3998 | 15800 | 1.2306 | 0.6534 |
1.0912 | 11.5441 | 16000 | 1.2176 | 0.6513 |
1.1228 | 11.6884 | 16200 | 1.2280 | 0.6512 |
1.0333 | 11.8328 | 16400 | 1.2177 | 0.6529 |
1.1128 | 11.9771 | 16600 | 1.2129 | 0.6567 |
1.081 | 12.1212 | 16800 | 1.2443 | 0.6549 |
1.0753 | 12.2656 | 17000 | 1.2444 | 0.6553 |
1.1234 | 12.4099 | 17200 | 1.2570 | 0.6532 |
1.0857 | 12.5542 | 17400 | 1.2448 | 0.6579 |
1.0638 | 12.6985 | 17600 | 1.2422 | 0.6503 |
1.058 | 12.8429 | 17800 | 1.2605 | 0.6552 |
1.0955 | 12.9872 | 18000 | 1.2095 | 0.6517 |
1.0803 | 13.1313 | 18200 | 1.2585 | 0.6548 |
1.0747 | 13.2757 | 18400 | 1.2272 | 0.6509 |
1.0812 | 13.4200 | 18600 | 1.2323 | 0.6506 |
1.0908 | 13.5643 | 18800 | 1.2551 | 0.6528 |
1.0275 | 13.7086 | 19000 | 1.2790 | 0.6586 |
1.1142 | 13.8530 | 19200 | 1.2268 | 0.6523 |
1.0585 | 13.9973 | 19400 | 1.2435 | 0.6516 |
1.028 | 14.1414 | 19600 | 1.2391 | 0.6499 |
1.0052 | 14.2858 | 19800 | 1.2482 | 0.6503 |
1.0836 | 14.4301 | 20000 | 1.2608 | 0.6502 |
1.0855 | 14.5744 | 20200 | 1.2717 | 0.6540 |
0.9843 | 14.7187 | 20400 | 1.2418 | 0.6480 |
1.0577 | 14.8631 | 20600 | 1.2249 | 0.6415 |
0.9924 | 15.0072 | 20800 | 1.2510 | 0.6509 |
1.0052 | 15.1515 | 21000 | 1.2525 | 0.6489 |
1.0604 | 15.2959 | 21200 | 1.2139 | 0.6456 |
1.0508 | 15.4402 | 21400 | 1.2373 | 0.6426 |
1.0659 | 15.5845 | 21600 | 1.2365 | 0.6459 |
0.9982 | 15.7288 | 21800 | 1.2425 | 0.6456 |
1.0367 | 15.8732 | 22000 | 1.2218 | 0.6434 |
0.947 | 16.0173 | 22200 | 1.2406 | 0.6456 |
0.9553 | 16.1616 | 22400 | 1.2621 | 0.6491 |
1.001 | 16.3060 | 22600 | 1.2358 | 0.6443 |
1.0512 | 16.4503 | 22800 | 1.2422 | 0.6409 |
1.0767 | 16.5946 | 23000 | 1.2405 | 0.6421 |
0.9993 | 16.7390 | 23200 | 1.2561 | 0.6465 |
1.1164 | 16.8833 | 23400 | 1.2498 | 0.6441 |
0.9514 | 17.0274 | 23600 | 1.2390 | 0.6412 |
0.995 | 17.1717 | 23800 | 1.2395 | 0.6402 |
1.0164 | 17.3161 | 24000 | 1.2607 | 0.6443 |
1.0391 | 17.4604 | 24200 | 1.2437 | 0.6406 |
1.057 | 17.6047 | 24400 | 1.2593 | 0.6442 |
0.9618 | 17.7491 | 24600 | 1.2319 | 0.6388 |
1.0072 | 17.8934 | 24800 | 1.2342 | 0.6394 |
0.9628 | 18.0375 | 25000 | 1.2617 | 0.6431 |
0.9822 | 18.1819 | 25200 | 1.2329 | 0.6353 |
1.0308 | 18.3262 | 25400 | 1.2278 | 0.6359 |
0.924 | 18.4705 | 25600 | 1.2377 | 0.6393 |
0.8818 | 18.6148 | 25800 | 1.2282 | 0.6344 |
0.9586 | 18.7592 | 26000 | 1.2327 | 0.6377 |
1.0566 | 18.9035 | 26200 | 1.2240 | 0.6372 |
1.0085 | 19.0476 | 26400 | 1.2467 | 0.6354 |
0.9729 | 19.1920 | 26600 | 1.2339 | 0.6347 |
0.9759 | 19.3363 | 26800 | 1.2319 | 0.6351 |
0.9842 | 19.4806 | 27000 | 1.2330 | 0.6350 |
0.9716 | 19.6249 | 27200 | 1.2423 | 0.6357 |
0.9777 | 19.7693 | 27400 | 1.2291 | 0.6360 |
0.9884 | 19.9136 | 27600 | 1.2322 | 0.6353 |
0.9929 | 20.0577 | 27800 | 1.2399 | 0.6332 |
0.9958 | 20.2021 | 28000 | 1.2410 | 0.6327 |
1.0149 | 20.3464 | 28200 | 1.2415 | 0.6325 |
0.993 | 20.4907 | 28400 | 1.2359 | 0.6328 |
0.9304 | 20.6350 | 28600 | 1.2479 | 0.6358 |
1.0002 | 20.7794 | 28800 | 1.2400 | 0.6334 |
0.9608 | 20.9237 | 29000 | 1.2343 | 0.6332 |
0.9917 | 21.0678 | 29200 | 1.2538 | 0.6346 |
1.0764 | 21.2122 | 29400 | 1.2507 | 0.6342 |
0.9517 | 21.3565 | 29600 | 1.2522 | 0.6324 |
1.0005 | 21.5008 | 29800 | 1.2452 | 0.6313 |
0.9288 | 21.6451 | 30000 | 1.2450 | 0.6289 |
0.9411 | 21.7895 | 30200 | 1.2445 | 0.6303 |
0.9789 | 21.9338 | 30400 | 1.2426 | 0.6299 |
0.9787 | 22.0779 | 30600 | 1.2387 | 0.6299 |
0.9344 | 22.2223 | 30800 | 1.2563 | 0.6321 |
0.9543 | 22.3666 | 31000 | 1.2456 | 0.6291 |
0.9442 | 22.5109 | 31200 | 1.2471 | 0.6301 |
0.93 | 22.6552 | 31400 | 1.2437 | 0.6304 |
0.9141 | 22.7996 | 31600 | 1.2323 | 0.6289 |
0.9566 | 22.9439 | 31800 | 1.2540 | 0.6322 |
0.9897 | 23.0880 | 32000 | 1.2508 | 0.6307 |
0.9457 | 23.2324 | 32200 | 1.2563 | 0.6297 |
0.9621 | 23.3767 | 32400 | 1.2455 | 0.6291 |
0.933 | 23.5210 | 32600 | 1.2506 | 0.6291 |
1.0252 | 23.6653 | 32800 | 1.2407 | 0.6282 |
0.9206 | 23.8097 | 33000 | 1.2530 | 0.6278 |
1.0066 | 23.9540 | 33200 | 1.2440 | 0.6279 |
0.9313 | 24.0981 | 33400 | 1.2611 | 0.6298 |
0.8982 | 24.2425 | 33600 | 1.2491 | 0.6299 |
0.9105 | 24.3868 | 33800 | 1.2464 | 0.6292 |
0.9753 | 24.5311 | 34000 | 1.2395 | 0.6281 |
0.9289 | 24.6754 | 34200 | 1.2465 | 0.6297 |
0.8978 | 24.8198 | 34400 | 1.2421 | 0.6288 |
0.9517 | 24.9641 | 34600 | 1.2454 | 0.6290 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.2
- Downloads last month
- 41
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for samil24/wav2vec2-large-xls-r-kurmanji_aug-telephone_v5
Base model
facebook/wav2vec2-large-xlsr-53