wav2vec2-large-xls-r-kurmanji_aug-telephone_v5

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2454
  • Wer: 0.6290

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 25
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
7.815 0.1443 200 5.5186 1.0
3.3411 0.2887 400 3.3207 1.0
3.1552 0.4330 600 3.0841 1.0
3.0904 0.5773 800 3.0660 1.0
3.0635 0.7216 1000 3.0024 1.0
2.7642 0.8660 1200 2.5705 0.9995
1.9992 1.0101 1400 1.9583 0.9515
1.8396 1.1544 1600 1.7276 0.8935
1.765 1.2988 1800 1.6737 0.8551
1.7256 1.4431 2000 1.5843 0.8350
1.6413 1.5874 2200 1.5684 0.8216
1.5743 1.7317 2400 1.5523 0.8149
1.5836 1.8761 2600 1.4723 0.8035
1.4436 2.0202 2800 1.5032 0.7954
1.5497 2.1645 3000 1.4220 0.7815
1.5002 2.3089 3200 1.4112 0.7741
1.5095 2.4532 3400 1.4244 0.7685
1.5096 2.5975 3600 1.3701 0.7705
1.4866 2.7418 3800 1.3748 0.7646
1.3959 2.8862 4000 1.4268 0.7681
1.5534 3.0303 4200 1.3444 0.7613
1.4359 3.1746 4400 1.3694 0.7424
1.3374 3.3190 4600 1.3692 0.7405
1.3404 3.4633 4800 1.3744 0.7427
1.4218 3.6076 5000 1.3273 0.7338
1.3039 3.7519 5200 1.3755 0.7331
1.3425 3.8963 5400 1.3124 0.7279
1.4135 4.0404 5600 1.3247 0.7223
1.3104 4.1847 5800 1.3698 0.7221
1.3563 4.3291 6000 1.3019 0.7176
1.2269 4.4734 6200 1.3040 0.7135
1.2845 4.6177 6400 1.3283 0.7189
1.2872 4.7620 6600 1.3023 0.7143
1.4382 4.9064 6800 1.3155 0.7165
1.388 5.0505 7000 1.2720 0.7055
1.3685 5.1948 7200 1.2953 0.7068
1.2421 5.3392 7400 1.2655 0.7068
1.2857 5.4835 7600 1.2946 0.6995
1.2746 5.6278 7800 1.2790 0.6980
1.2232 5.7721 8000 1.2647 0.6957
1.2888 5.9165 8200 1.2688 0.6923
1.264 6.0606 8400 1.2880 0.6947
1.2393 6.2049 8600 1.2652 0.6920
1.2347 6.3493 8800 1.3297 0.6957
1.2623 6.4936 9000 1.2662 0.6880
1.2888 6.6379 9200 1.2479 0.6955
1.2617 6.7822 9400 1.2539 0.6905
1.2417 6.9266 9600 1.2786 0.6814
1.303 7.0707 9800 1.2602 0.6845
1.1906 7.2150 10000 1.2565 0.6824
1.1864 7.3594 10200 1.2617 0.6849
1.1854 7.5037 10400 1.2731 0.6812
1.1525 7.6480 10600 1.2272 0.6922
1.2142 7.7924 10800 1.2500 0.6798
1.247 7.9367 11000 1.2556 0.6816
1.1305 8.0808 11200 1.2819 0.6838
1.1322 8.2251 11400 1.3057 0.6858
1.1797 8.3695 11600 1.2393 0.6769
1.1337 8.5138 11800 1.2620 0.6782
1.2728 8.6581 12000 1.2422 0.6727
1.1648 8.8025 12200 1.2427 0.6766
1.2013 8.9468 12400 1.2361 0.6730
1.1283 9.0909 12600 1.2718 0.6801
1.197 9.2353 12800 1.2518 0.6751
1.1701 9.3796 13000 1.2475 0.6676
1.1722 9.5239 13200 1.2492 0.6680
1.1057 9.6682 13400 1.2268 0.6693
1.2214 9.8126 13600 1.2230 0.6636
1.1606 9.9569 13800 1.2294 0.6668
1.2363 10.1010 14000 1.2762 0.6740
1.1314 10.2454 14200 1.2585 0.6670
1.1285 10.3897 14400 1.2381 0.6595
1.1105 10.5340 14600 1.2270 0.6648
1.1566 10.6783 14800 1.2133 0.6629
1.1405 10.8227 15000 1.2194 0.6627
1.1321 10.9670 15200 1.2274 0.6629
1.1513 11.1111 15400 1.2163 0.6587
1.0144 11.2555 15600 1.2394 0.6596
1.1714 11.3998 15800 1.2306 0.6534
1.0912 11.5441 16000 1.2176 0.6513
1.1228 11.6884 16200 1.2280 0.6512
1.0333 11.8328 16400 1.2177 0.6529
1.1128 11.9771 16600 1.2129 0.6567
1.081 12.1212 16800 1.2443 0.6549
1.0753 12.2656 17000 1.2444 0.6553
1.1234 12.4099 17200 1.2570 0.6532
1.0857 12.5542 17400 1.2448 0.6579
1.0638 12.6985 17600 1.2422 0.6503
1.058 12.8429 17800 1.2605 0.6552
1.0955 12.9872 18000 1.2095 0.6517
1.0803 13.1313 18200 1.2585 0.6548
1.0747 13.2757 18400 1.2272 0.6509
1.0812 13.4200 18600 1.2323 0.6506
1.0908 13.5643 18800 1.2551 0.6528
1.0275 13.7086 19000 1.2790 0.6586
1.1142 13.8530 19200 1.2268 0.6523
1.0585 13.9973 19400 1.2435 0.6516
1.028 14.1414 19600 1.2391 0.6499
1.0052 14.2858 19800 1.2482 0.6503
1.0836 14.4301 20000 1.2608 0.6502
1.0855 14.5744 20200 1.2717 0.6540
0.9843 14.7187 20400 1.2418 0.6480
1.0577 14.8631 20600 1.2249 0.6415
0.9924 15.0072 20800 1.2510 0.6509
1.0052 15.1515 21000 1.2525 0.6489
1.0604 15.2959 21200 1.2139 0.6456
1.0508 15.4402 21400 1.2373 0.6426
1.0659 15.5845 21600 1.2365 0.6459
0.9982 15.7288 21800 1.2425 0.6456
1.0367 15.8732 22000 1.2218 0.6434
0.947 16.0173 22200 1.2406 0.6456
0.9553 16.1616 22400 1.2621 0.6491
1.001 16.3060 22600 1.2358 0.6443
1.0512 16.4503 22800 1.2422 0.6409
1.0767 16.5946 23000 1.2405 0.6421
0.9993 16.7390 23200 1.2561 0.6465
1.1164 16.8833 23400 1.2498 0.6441
0.9514 17.0274 23600 1.2390 0.6412
0.995 17.1717 23800 1.2395 0.6402
1.0164 17.3161 24000 1.2607 0.6443
1.0391 17.4604 24200 1.2437 0.6406
1.057 17.6047 24400 1.2593 0.6442
0.9618 17.7491 24600 1.2319 0.6388
1.0072 17.8934 24800 1.2342 0.6394
0.9628 18.0375 25000 1.2617 0.6431
0.9822 18.1819 25200 1.2329 0.6353
1.0308 18.3262 25400 1.2278 0.6359
0.924 18.4705 25600 1.2377 0.6393
0.8818 18.6148 25800 1.2282 0.6344
0.9586 18.7592 26000 1.2327 0.6377
1.0566 18.9035 26200 1.2240 0.6372
1.0085 19.0476 26400 1.2467 0.6354
0.9729 19.1920 26600 1.2339 0.6347
0.9759 19.3363 26800 1.2319 0.6351
0.9842 19.4806 27000 1.2330 0.6350
0.9716 19.6249 27200 1.2423 0.6357
0.9777 19.7693 27400 1.2291 0.6360
0.9884 19.9136 27600 1.2322 0.6353
0.9929 20.0577 27800 1.2399 0.6332
0.9958 20.2021 28000 1.2410 0.6327
1.0149 20.3464 28200 1.2415 0.6325
0.993 20.4907 28400 1.2359 0.6328
0.9304 20.6350 28600 1.2479 0.6358
1.0002 20.7794 28800 1.2400 0.6334
0.9608 20.9237 29000 1.2343 0.6332
0.9917 21.0678 29200 1.2538 0.6346
1.0764 21.2122 29400 1.2507 0.6342
0.9517 21.3565 29600 1.2522 0.6324
1.0005 21.5008 29800 1.2452 0.6313
0.9288 21.6451 30000 1.2450 0.6289
0.9411 21.7895 30200 1.2445 0.6303
0.9789 21.9338 30400 1.2426 0.6299
0.9787 22.0779 30600 1.2387 0.6299
0.9344 22.2223 30800 1.2563 0.6321
0.9543 22.3666 31000 1.2456 0.6291
0.9442 22.5109 31200 1.2471 0.6301
0.93 22.6552 31400 1.2437 0.6304
0.9141 22.7996 31600 1.2323 0.6289
0.9566 22.9439 31800 1.2540 0.6322
0.9897 23.0880 32000 1.2508 0.6307
0.9457 23.2324 32200 1.2563 0.6297
0.9621 23.3767 32400 1.2455 0.6291
0.933 23.5210 32600 1.2506 0.6291
1.0252 23.6653 32800 1.2407 0.6282
0.9206 23.8097 33000 1.2530 0.6278
1.0066 23.9540 33200 1.2440 0.6279
0.9313 24.0981 33400 1.2611 0.6298
0.8982 24.2425 33600 1.2491 0.6299
0.9105 24.3868 33800 1.2464 0.6292
0.9753 24.5311 34000 1.2395 0.6281
0.9289 24.6754 34200 1.2465 0.6297
0.8978 24.8198 34400 1.2421 0.6288
0.9517 24.9641 34600 1.2454 0.6290

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.2
Downloads last month
41
Safetensors
Model size
315M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for samil24/wav2vec2-large-xls-r-kurmanji_aug-telephone_v5

Finetuned
(293)
this model