Text2Text Generation
Transformers
Safetensors
mt5
detoxification
text_style_transfer
etomoscow's picture
Update README.md
90072fc verified
---
library_name: transformers
tags:
- detoxification
- text_style_transfer
license: openrail++
datasets:
- s-nlp/synthdetoxm
language:
- de
- es
- fr
- ru
base_model:
- bigscience/mt0-xl
pipeline_tag: text2text-generation
---
# mT0-XL (SynthDetoxM Full)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61ade264f602880813dbe10b/V-_UsUgqXy1BStg2G9SfS.png)
<!-- Provide a quick summary of what the model is/does. -->
This a fine-tune of [`bigscience/mt0-xl`](https://huggingface.co/bigscience/mt0-xl) model on a subset of the multilingual text detoxification dataset [SynthDetoxM](https://huggingface.co/datasets/s-nlp/synthdetoxm) from the NAACL 2025 Main Track paper *SynthDetoxM: Modern LLMs are Few-Shot Parallel Detoxification Data Annotators* by Daniil Moskovskiy et al.
## Usage
The usage is similar to the
```python
from transformers import pipeline
toxic_text = "Your toxic text goes here."
pipe = pipeline("text2text-generation", model="s-nlp/mt0-xl-detox-sdm-full")
pipe(f"Detoxify: {toxic_text}")
```
## Training Details
The model was fine-tuned for 2 epochs on [`s-nlp/synthdetoxm`](https://huggingface.co/datasets/s-nlp/synthdetoxm) dataset with full precision (FP32) using Adafactor optimizer with `1e-4` learning rate and batch size of `4` with gradient checkpointing enabled. The full training configuration is available below:
```json
{
"do_train": true,
"do_eval": true,
"per_device_train_batch_size": 4,
"per_device_eval_batch_size": 4,
"learning_rate": 1e-4,
"weight_decay": 0,
"num_train_epochs": 2,
"gradient_accumulation_steps": 1,
"logging_strategy": "steps",
"logging_steps": 1,
"save_strategy": "epoch",
"save_total_limit": 1,
"warmup_steps": 1,
"report_to": "wandb",
"optim": "adafactor",
"lr_scheduler_type": "linear",
"predict_with_generate": true,
"bf16": false,
"gradient_checkpointing": true,
"output_dir": "/path/",
"seed": 42,
}
```
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
We use the multilingual detoxification evaluation setup from [TextDetox 2024 Multilingual Text Detoxification Shared Task](https://pan.webis.de/clef24/pan24-web/text-detoxification.html).
Specifically, we use the following metrics:
- **Style Transfer Accuracy** (**STA**) is calculated with a [`textdetox/xlmr-large-toxicity-classifier`](https://huggingface.co/textdetox/xlmr-large-toxicity-classifier).
- **Text Similarity** (**SIM**) is calculated as a similarity of text embeddings given by a [`sentence-transformers/LaBSE`](https://huggingface.co/sentence-transformers/LaBSE) encoder.
- **Fluency** (**FL**) is calculated as a character n-gram F score - [ChrF1](https://github.com/m-popovic/chrF).
These metrics are aggregated in a final **Joint** metric (**J**):
$$\textbf{J} = \frac{1}{n}\sum\limits_{i=1}^{n}\textbf{STA}(y_i) \cdot \textbf{SIM}(x_i,y_i) \cdot \textbf{FL}(x_i, y_i)$$
### Evaluation Results
This model was evaluated on the test set of [`textdetox/multilingual_paradetox`](https://huggingface.co/datasets/textdetox/multilingual_paradetox) dataset from [TextDetox 2024 Multilingual Text Detoxification Shared Task](https://pan.webis.de/clef24/pan24-web/text-detoxification.html).
The results of the evaluation are presented below.
| | **German** | **Spanish** | **Russian** |
|----------------|------------|-------------|-------------|
| **Human References** | 0.733 | 0.709 | 0.732 |
| **Baselines** | | | |
| Duplicate | 0.287 | 0.090 | 0.048 |
| Delete | 0.362 | 0.319 | 0.255 |
| Backtranslation| 0.233 | 0.275 | 0.223 |
| **mT0-XL supervised fine-tuning** | | | |
| [MultiParaDetox](https://huggingface.co/datasets/textdetox/multilingual_paradetox) [`s-nlp/mt0-xl-detox-mpd`](https://huggingface.co/s-nlp/mt0-xl-detox-mpd) | 0.446 | 0.344 | 0.472 |
| [SynthDetoxM](https://huggingface.co/datasets/s-nlp/synthdetoxm) (Subset AVG this model) | 0.460 | 0.402 | 0.475 |
| [SynthDetoxM](https://huggingface.co/datasets/s-nlp/synthdetoxm) [`s-nlp/mt0-xl-detox-sdm-full`](https://huggingface.co/s-nlp/mt0-xl-detox-sdm-full) | **0.482** | **0.470** | **0.546** |
#### Software
Code for replicating the results from the paper can be found on [GitHub](https://github.com/s-nlp/synthdetoxm).
## Citation
**BibTeX:**
```latex
@misc{moskovskiy2025synthdetoxmmodernllmsfewshot,
title={SynthDetoxM: Modern LLMs are Few-Shot Parallel Detoxification Data Annotators},
author={Daniil Moskovskiy and Nikita Sushko and Sergey Pletenev and Elena Tutubalina and Alexander Panchenko},
year={2025},
eprint={2502.06394},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2502.06394},
}
```
## License
This model is licensed under the OpenRAIL++ License, which supports the development of various technologies—both industrial and academic—that serve the public good.
## Model Card Authors
[Daniil Moskovskiy](https://huggingface.co/etomoscow)
## Model Card Contact
For any questions, please contact: [Daniil Moskovskiy](Daniil.Moskovskiy@skoltech.ru)