MobileSam: Optimized for Mobile Deployment

FASTER SEGMENT ANYTHING: TOWARDS LIGHTWEIGHT SAM FOR MOBILE APPLICATIONS

Transformer based encoder-decoder where prompts specify what to segment in an image thereby allowing segmentation without the need for additional training. The image encoder generates embeddings and the lightweight decoder operates on the embeddings for point and mask based image segmentation.

This model is an implementation of MobileSam found here.

This repository provides scripts to run MobileSam on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Semantic segmentation
  • Model Stats:
    • Model checkpoint: vit_t
    • Input resolution: 720p (720x1280)
    • Number of parameters (MobileSamDecoder): 3.876M
    • Model size (MobileSamDecoder): 19.6 MB
Model Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Precision Primary Compute Unit Target Model
SAMEncoder Samsung Galaxy S23 Snapdragon® 8 Gen 2 TFLITE 439.913 ms 34 - 60 MB FP16 NPU MobileSam.tflite
SAMEncoder Samsung Galaxy S23 Snapdragon® 8 Gen 2 QNN 334.816 ms 12 - 89 MB FP16 NPU MobileSam.so
SAMEncoder Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 417.54 ms 65 - 122 MB FP16 NPU MobileSam.onnx
SAMEncoder Samsung Galaxy S24 Snapdragon® 8 Gen 3 TFLITE 335.191 ms 33 - 158 MB FP16 NPU MobileSam.tflite
SAMEncoder Samsung Galaxy S24 Snapdragon® 8 Gen 3 QNN 247.716 ms 191 - 694 MB FP16 NPU MobileSam.so
SAMEncoder Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 313.436 ms 95 - 218 MB FP16 NPU MobileSam.onnx
SAMEncoder Snapdragon 8 Elite QRD Snapdragon® 8 Elite TFLITE 237.753 ms 33 - 166 MB FP16 NPU MobileSam.tflite
SAMEncoder Snapdragon 8 Elite QRD Snapdragon® 8 Elite QNN 235.822 ms 12 - 519 MB FP16 NPU Use Export Script
SAMEncoder Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 271.979 ms 78 - 213 MB FP16 NPU MobileSam.onnx
SAMEncoder SA7255P ADP SA7255P TFLITE 1302.15 ms 33 - 166 MB FP16 NPU MobileSam.tflite
SAMEncoder SA7255P ADP SA7255P QNN 991.612 ms 12 - 21 MB FP16 NPU Use Export Script
SAMEncoder SA8255 (Proxy) SA8255P Proxy TFLITE 415.155 ms 33 - 59 MB FP16 NPU MobileSam.tflite
SAMEncoder SA8255 (Proxy) SA8255P Proxy QNN 266.684 ms 12 - 15 MB FP16 NPU Use Export Script
SAMEncoder SA8295P ADP SA8295P TFLITE 585.405 ms 33 - 168 MB FP16 NPU MobileSam.tflite
SAMEncoder SA8295P ADP SA8295P QNN 424.958 ms 0 - 18 MB FP16 NPU Use Export Script
SAMEncoder SA8650 (Proxy) SA8650P Proxy TFLITE 432.024 ms 33 - 58 MB FP16 NPU MobileSam.tflite
SAMEncoder SA8650 (Proxy) SA8650P Proxy QNN 268.519 ms 12 - 15 MB FP16 NPU Use Export Script
SAMEncoder SA8775P ADP SA8775P TFLITE 494.361 ms 33 - 165 MB FP16 NPU MobileSam.tflite
SAMEncoder SA8775P ADP SA8775P QNN 330.266 ms 1 - 11 MB FP16 NPU Use Export Script
SAMEncoder QCS8275 (Proxy) QCS8275 Proxy TFLITE 1302.15 ms 33 - 166 MB FP16 NPU MobileSam.tflite
SAMEncoder QCS8275 (Proxy) QCS8275 Proxy QNN 991.612 ms 12 - 21 MB FP16 NPU Use Export Script
SAMEncoder QCS8550 (Proxy) QCS8550 Proxy TFLITE 420.702 ms 33 - 60 MB FP16 NPU MobileSam.tflite
SAMEncoder QCS8550 (Proxy) QCS8550 Proxy QNN 270.321 ms 12 - 15 MB FP16 NPU Use Export Script
SAMEncoder QCS9075 (Proxy) QCS9075 Proxy TFLITE 494.361 ms 33 - 165 MB FP16 NPU MobileSam.tflite
SAMEncoder QCS9075 (Proxy) QCS9075 Proxy QNN 330.266 ms 1 - 11 MB FP16 NPU Use Export Script
SAMEncoder QCS8450 (Proxy) QCS8450 Proxy TFLITE 597.124 ms 33 - 171 MB FP16 NPU MobileSam.tflite
SAMEncoder QCS8450 (Proxy) QCS8450 Proxy QNN 503.439 ms 12 - 572 MB FP16 NPU Use Export Script
SAMEncoder Snapdragon X Elite CRD Snapdragon® X Elite QNN 275.036 ms 12 - 12 MB FP16 NPU Use Export Script
SAMEncoder Snapdragon X Elite CRD Snapdragon® X Elite ONNX 448.994 ms 130 - 130 MB FP16 NPU MobileSam.onnx
SAMDecoder Samsung Galaxy S23 Snapdragon® 8 Gen 2 TFLITE 7.38 ms 0 - 29 MB FP16 NPU MobileSam.tflite
SAMDecoder Samsung Galaxy S23 Snapdragon® 8 Gen 2 QNN 6.435 ms 4 - 21 MB FP16 NPU MobileSam.so
SAMDecoder Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 8.887 ms 1 - 62 MB FP16 NPU MobileSam.onnx
SAMDecoder Samsung Galaxy S24 Snapdragon® 8 Gen 3 TFLITE 5.151 ms 0 - 46 MB FP16 NPU MobileSam.tflite
SAMDecoder Samsung Galaxy S24 Snapdragon® 8 Gen 3 QNN 4.55 ms 4 - 48 MB FP16 NPU MobileSam.so
SAMDecoder Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 6.067 ms 6 - 75 MB FP16 NPU MobileSam.onnx
SAMDecoder Snapdragon 8 Elite QRD Snapdragon® 8 Elite TFLITE 5.041 ms 0 - 44 MB FP16 NPU MobileSam.tflite
SAMDecoder Snapdragon 8 Elite QRD Snapdragon® 8 Elite QNN 4.357 ms 4 - 42 MB FP16 NPU Use Export Script
SAMDecoder Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 4.566 ms 4 - 62 MB FP16 NPU MobileSam.onnx
SAMDecoder SA7255P ADP SA7255P TFLITE 53.054 ms 0 - 40 MB FP16 NPU MobileSam.tflite
SAMDecoder SA7255P ADP SA7255P QNN 48.542 ms 1 - 11 MB FP16 NPU Use Export Script
SAMDecoder SA8255 (Proxy) SA8255P Proxy TFLITE 7.371 ms 0 - 26 MB FP16 NPU MobileSam.tflite
SAMDecoder SA8255 (Proxy) SA8255P Proxy QNN 6.184 ms 4 - 6 MB FP16 NPU Use Export Script
SAMDecoder SA8295P ADP SA8295P TFLITE 9.906 ms 0 - 36 MB FP16 NPU MobileSam.tflite
SAMDecoder SA8295P ADP SA8295P QNN 7.432 ms 0 - 17 MB FP16 NPU Use Export Script
SAMDecoder SA8650 (Proxy) SA8650P Proxy TFLITE 7.351 ms 0 - 25 MB FP16 NPU MobileSam.tflite
SAMDecoder SA8650 (Proxy) SA8650P Proxy QNN 6.18 ms 4 - 7 MB FP16 NPU Use Export Script
SAMDecoder SA8775P ADP SA8775P TFLITE 10.347 ms 0 - 40 MB FP16 NPU MobileSam.tflite
SAMDecoder SA8775P ADP SA8775P QNN 8.85 ms 1 - 11 MB FP16 NPU Use Export Script
SAMDecoder QCS8275 (Proxy) QCS8275 Proxy TFLITE 53.054 ms 0 - 40 MB FP16 NPU MobileSam.tflite
SAMDecoder QCS8275 (Proxy) QCS8275 Proxy QNN 48.542 ms 1 - 11 MB FP16 NPU Use Export Script
SAMDecoder QCS8550 (Proxy) QCS8550 Proxy TFLITE 7.346 ms 0 - 26 MB FP16 NPU MobileSam.tflite
SAMDecoder QCS8550 (Proxy) QCS8550 Proxy QNN 6.298 ms 4 - 6 MB FP16 NPU Use Export Script
SAMDecoder QCS9075 (Proxy) QCS9075 Proxy TFLITE 10.347 ms 0 - 40 MB FP16 NPU MobileSam.tflite
SAMDecoder QCS9075 (Proxy) QCS9075 Proxy QNN 8.85 ms 1 - 11 MB FP16 NPU Use Export Script
SAMDecoder QCS8450 (Proxy) QCS8450 Proxy TFLITE 8.763 ms 0 - 42 MB FP16 NPU MobileSam.tflite
SAMDecoder QCS8450 (Proxy) QCS8450 Proxy QNN 8.018 ms 4 - 42 MB FP16 NPU Use Export Script
SAMDecoder Snapdragon X Elite CRD Snapdragon® X Elite QNN 6.736 ms 4 - 4 MB FP16 NPU Use Export Script
SAMDecoder Snapdragon X Elite CRD Snapdragon® X Elite ONNX 10.021 ms 12 - 12 MB FP16 NPU MobileSam.onnx

Installation

Install the package via pip:

pip install "qai-hub-models[mobilesam]"

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.mobilesam.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.mobilesam.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.mobilesam.export
Profiling Results
------------------------------------------------------------
SAMEncoder
Device                          : Samsung Galaxy S23 (13)   
Runtime                         : TFLITE                    
Estimated inference time (ms)   : 439.9                     
Estimated peak memory usage (MB): [34, 60]                  
Total # Ops                     : 592                       
Compute Unit(s)                 : NPU (532 ops) CPU (60 ops)

------------------------------------------------------------
SAMDecoder
Device                          : Samsung Galaxy S23 (13)
Runtime                         : TFLITE                 
Estimated inference time (ms)   : 7.4                    
Estimated peak memory usage (MB): [0, 29]                
Total # Ops                     : 845                    
Compute Unit(s)                 : NPU (845 ops)          

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.mobilesam import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S24")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.

Run demo on a cloud-hosted device

You can also run the demo on-device.

python -m qai_hub_models.models.mobilesam.demo --on-device

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.mobilesam.demo -- --on-device

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on MobileSam's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of MobileSam can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support