metadata
license: apache-2.0
language:
- en
base_model:
- Qwen/Qwen2.5-7B-Instruct
pipeline_tag: text-generation
library_name: transformers
tags:
- LCoT
- Qwen
datasets:
- PowerInfer/QWQ-LONGCOT-500K
- AI-MO/NuminaMath-CoT
- prithivMLmods/Math-Solve
- amphora/QwQ-LongCoT-130K
- prithivMLmods/Deepthink-Reasoning
QwQ-LCoT2-7B-Instruct
The QwQ-LCoT2-7B-Instruct is a fine-tuned language model designed for advanced reasoning and instruction-following tasks. It leverages the Qwen2.5-7B base model and has been fine-tuned on the chain of thought reasoning datasets, focusing on chain-of-thought (CoT) reasoning for problems. This model is optimized for tasks requiring logical reasoning, detailed explanations, and multi-step problem-solving, making it ideal for applications such as instruction-following, text generation, and complex reasoning tasks.
Quickstart with Transformers
Here provides a code snippet with apply_chat_template
to show you how to load the tokenizer and model and how to generate contents.
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "prithivMLmods/QwQ-LCoT2-7B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r in strawberry."
messages = [
{"role": "system", "content": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]