Job-Skill matching fintuned Alibaba-NLP/gte-Qwen2-7B-instruct lora

Top performing model on TalentCLEF 2025 Task B. Use it for job title <-> skill set matching

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Alibaba-NLP/gte-Qwen2-7B-instruct
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 3584 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: Qwen2Model 
  (1): Pooling({'word_embedding_dimension': 3584, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("pj-mathematician/JobSkillGTE-7b-lora")
# Run inference
sentences = [
    "An insulation supervisor, regardless of the specific type of insulation material or installation area, requires strong project management skills, knowledge of building codes and safety regulations, and expertise in insulation techniques to oversee the installation process effectively and ensure quality standards are met.\n['insulation supervisor', 'supervisor of installation of insulating materials', 'supervisor of insulation materials installation', 'supervisor of installation of insulation', 'solid wall insulation installation supervisor', 'insulation installers supervisor', 'cavity wall insulation installation supervisor', 'loft insulation installation supervisor']",
    "The skill of installing insulation material is primarily required by job roles such as insulation workers, HVAC technicians, and construction specialists, who are responsible for improving energy efficiency and thermal comfort in buildings by correctly fitting and fixing insulation materials in various structures.\n['install insulation material', 'insulate structure', 'fix insulation', 'insulation material installation', 'installation of insulation material', 'fitting insulation', 'insulating structure', 'installing insulation material', 'fixing insulation', 'fit insulation']",
    "Job roles such as Food Safety Inspector, Public Health Officer, and Environmental Health Specialist require the skill of taking action on food safety violations to ensure compliance with health regulations and maintain public safety standards.\n['take action on food safety violations', 'invoke action on food safety violations', 'agree action on food safety violations', 'pursue action on food safety violations', 'determine action on food safety violations']",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 3584]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

Unnamed Dataset

  • Size: 114,699 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 73 tokens
    • mean: 133.53 tokens
    • max: 333 tokens
    • min: 44 tokens
    • mean: 104.56 tokens
    • max: 236 tokens
  • Samples:
    anchor positive
    A technical director or any of its synonyms requires a strong blend of technical expertise and leadership skills, including the ability to oversee technical operations, manage teams, and ensure the successful execution of technical projects while maintaining operational efficiency and innovation.
    ['technical director', 'technical and operations director', 'head of technical', 'director of technical arts', 'head of technical department', 'technical supervisor', 'technical manager']
    Job roles that require promoting health and safety include occupational health and safety specialists, safety managers, and public health educators, all of whom work to ensure safe and healthy environments in workplaces and communities.
    ['promote health and safety', 'promote importance of health and safety', 'promoting health and safety', 'advertise health and safety']
    A technical director or any of its synonyms requires a strong blend of technical expertise and leadership skills, including the ability to oversee technical operations, manage teams, and ensure the successful execution of technical projects while maintaining operational efficiency and innovation.
    ['technical director', 'technical and operations director', 'head of technical', 'director of technical arts', 'head of technical department', 'technical supervisor', 'technical manager']
    Job roles that require organizing rehearsals include directors, choreographers, and conductors in theater, dance, and music ensembles, who must efficiently plan and schedule practice sessions to prepare performers for a successful final performance.
    ['organise rehearsals', 'organise rehearsal', 'organize rehearsals', 'plan rehearsals', 'arrange rehearsals', 'organising rehearsals', 'schedule rehearsals']
    A technical director or any of its synonyms requires a strong blend of technical expertise and leadership skills, including the ability to oversee technical operations, manage teams, and ensure the successful execution of technical projects while maintaining operational efficiency and innovation.
    ['technical director', 'technical and operations director', 'head of technical', 'director of technical arts', 'head of technical department', 'technical supervisor', 'technical manager']
    Job roles such as Health and Safety Managers, Environmental Health Officers, and Risk Management Specialists often require the skill of negotiating health and safety issues with third parties to ensure compliance and protection standards are met across different organizations and sites.
    ['negotiate health and safety issues with third parties', 'agree with third parties on health and safety', 'negotiate issues on health and safety with third parties', 'negotiate with third parties on health and safety issues', 'negotiate health and safety matters with third parties']
  • Loss: CachedGISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01, 'mini_batch_size': 48, 'margin_strategy': 'absolute', 'margin': 0.0}
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • gradient_accumulation_steps: 2
  • num_train_epochs: 2
  • warmup_ratio: 0.05
  • log_on_each_node: False
  • fp16: True
  • dataloader_num_workers: 4
  • fsdp: ['full_shard', 'auto_wrap']
  • fsdp_config: {'transformer_layer_cls_to_wrap': ['Qwen2DecoderLayer'], 'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • ddp_find_unused_parameters: True
  • gradient_checkpointing: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 2
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.05
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: False
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: True
  • dataloader_num_workers: 4
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: ['full_shard', 'auto_wrap']
  • fsdp_min_num_params: 0
  • fsdp_config: {'transformer_layer_cls_to_wrap': ['Qwen2DecoderLayer'], 'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: True
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: True
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss
0.0156 1 21.5186
0.0312 2 21.4075
0.0469 3 21.0309
0.0625 4 20.7294
0.0781 5 20.9851
0.0938 6 21.3215
0.1094 7 19.8458
0.125 8 18.52
0.1406 9 17.622
0.1562 10 17.5794
0.1719 11 15.8784
0.1875 12 14.5842
0.2031 13 13.3324
0.2188 14 12.3194
0.2344 15 11.2523
0.25 16 10.7172
0.2656 17 10.0063
0.2812 18 9.5643
0.2969 19 9.2463
0.3125 20 8.6533
0.3281 21 8.0588
0.3438 22 8.1866
0.3594 23 7.6767
0.375 24 6.9832
0.3906 25 6.7932
0.4062 26 6.292
0.4219 27 6.1263
0.4375 28 5.8976
0.4531 29 5.7214
0.4688 30 5.6451
0.4844 31 5.6232
0.5 32 5.2984
0.5156 33 5.0322
0.5312 34 4.9435
0.5469 35 4.737
0.5625 36 4.4266
0.5781 37 4.5082
0.5938 38 4.315
0.6094 39 4.269
0.625 40 4.2473
0.6406 41 4.2054
0.6562 42 4.2172
0.6719 43 3.8311
0.6875 44 4.0803
0.7031 45 4.2809
0.7188 46 4.1843
0.7344 47 3.9913
0.75 48 3.9465
0.7656 49 4.0828
0.7812 50 4.0018
0.7969 51 3.8023
0.8125 52 3.897
0.8281 53 3.8941
0.8438 54 3.7708
0.8594 55 3.8051
0.875 56 3.7117
0.8906 57 3.8584
0.9062 58 3.6421
0.9219 59 3.7097
0.9375 60 3.6906
0.9531 61 3.7011
0.9688 62 3.744
0.9844 63 3.6493
1.0 64 3.5659

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 4.1.0
  • Transformers: 4.51.2
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.6.0
  • Datasets: 3.5.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for pj-mathematician/JobSkillGTE-7b-lora

Finetuned
(8)
this model

Collection including pj-mathematician/JobSkillGTE-7b-lora