You can now bill your inference costs from all our inference partners (together, fireworks, fal, sambanova, cerebras, hyperbolic,...) to your Hugging Face organization.
Useful to drive more company-wide usage of AI without the billing headaches!
multimodal > Moonshot AI released Kimi VL Thinking, first working open-source multimodal reasoning model and Kimi VL Instruct, both 16B MoEs with 3B active params (OS) > InternVL3 released based on Qwen2.5VL, 7 ckpts with various sizes (1B to 78B)
LLMs > NVIDIA released Llama-3_1-Nemotron-Ultra-253B-v1 an LLM built on Llama 405B for reasoning, chat and tool use > Agentica released DeepCoder-14B-Preview, fine-tuned version of DeepSeek-R1-Distilled-Qwen-14B on problem-test pairs, along with the compiled dataset > Zyphra/ZR1-1.5B is a new small reasoning LLM built on R1-Distill-1.5B (OS) > Skywork-OR1-32B-Preview is a new reasoning model by Skywork
Image Generation > HiDream releases three new models, HiDream I1 Dev, I1 Full, and I1 fast for image generation (OS)
Before 2020, most of the AI field was open and collaborative. For me, that was the key factor that accelerated scientific progress and made the impossible possible—just look at the “T” in ChatGPT, which comes from the Transformer architecture openly shared by Google.
Then came the myth that AI was too dangerous to share, and companies started optimizing for short-term revenue. That led many major AI labs and researchers to stop sharing and collaborating.
With OAI and sama now saying they're willing to share open weights again, we have a real chance to return to a golden age of AI progress and democratization—powered by openness and collaboration, in the US and around the world.
This is incredibly exciting. Let’s go, open science and open-source AI!
Very interesting security section by @yjernite@lvwerra@reach-vb@dvilasuero & the team replicating R1. Broadly applicable to most open-source models & some to APIs (but APIs have a lot more additional risks because you're not in control of the underlying system):
having trouble with auto train hello there this is the first time i am testing auto train with a 1.8k SFT dataset. Howevery i am not quite sure the training is going smooth. Logs seem quite confusing, token did not match can not auth, generates confusing train splits, do you know how i can check my running job properly? what is being used for training as data? any ideas?
👀 Multimodal > Mistral AI released a 24B vision LM, both base and instruction FT versions, sota 🔥 (OS) > with IBM we released SmolDocling, a sota 256M document parser with Apache 2.0 license (OS) > SpatialLM is a new vision LM that outputs 3D bounding boxes, comes with 0.5B (QwenVL based) and 1B (Llama based) variants > SkyWork released SkyWork-R1V-38B, new vision reasoning model (OS)
💬 LLMs > NVIDIA released new Nemotron models in 49B and 8B with their post-training dataset > LG released EXAONE, new reasoning models in 2.4B, 7.8B and 32B > Dataset: Glaive AI released a new reasoning dataset of 22M+ examples > Dataset: NVIDIA released new helpfulness dataset HelpSteer3 > Dataset: OpenManusRL is a new agent dataset based on ReAct framework (OS) > Open-R1 team released OlympicCoder, new competitive coder model in 7B and 32B > Dataset: GeneralThought-430K is a new reasoning dataset (OS)
🖼️ Image Generation/Computer Vision > Roboflow released RF-DETR, new real-time sota object detector (OS) 🔥 > YOLOE is a new real-time zero-shot object detector with text and visual prompts 🥹 > Stability AI released Stable Virtual Camera, a new novel view synthesis model > Tencent released Hunyuan3D-2mini, new small and fast 3D asset generation model > ByteDance released InfiniteYou, new realistic photo generation model > StarVector is a new 8B model that generates svg from images > FlexWorld is a new model that expands 3D views (OS)
🎤 Audio > Sesame released CSM-1B new speech generation model (OS)
🤖 Robotics > NVIDIA released GR00T, new robotics model for generalized reasoning and skills, along with the dataset