whisper-large-v3-turbo-ami-1
This model is a fine-tuned version of openai/whisper-large-v3-turbo on the ntnu-smil/ami-1s-ft dataset. It achieves the following results on the evaluation set:
- Loss: 3.4985
- Wer: 40.4100
- Cer: 34.3391
- Decode Runtime: 0.0102
- Wer Runtime: 0.0078
- Cer Runtime: 0.0077
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 32
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 2000
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Decode Runtime | Wer Runtime | Cer Runtime |
---|---|---|---|---|---|---|---|---|
No log | 0 | 0 | 3.9428 | 53.6237 | 39.2308 | 0.0108 | 0.0079 | 0.0071 |
0.4259 | 0.1 | 200 | 3.3403 | 36.4934 | 30.1718 | 0.0097 | 0.0080 | 0.0074 |
0.1836 | 0.2 | 400 | 3.3032 | 37.2255 | 32.0015 | 0.0097 | 0.0079 | 0.0072 |
0.333 | 0.3 | 600 | 3.3810 | 38.5798 | 32.6363 | 0.0110 | 0.0084 | 0.0072 |
0.1716 | 0.4 | 800 | 3.4782 | 39.2020 | 33.0769 | 0.0096 | 0.0081 | 0.0069 |
0.1919 | 0.5 | 1000 | 3.4548 | 39.1654 | 33.6146 | 0.0097 | 0.0079 | 0.0071 |
0.2053 | 0.6 | 1200 | 3.4784 | 39.6413 | 33.5848 | 0.0101 | 0.0084 | 0.0072 |
0.126 | 0.7 | 1400 | 3.5044 | 40.3734 | 34.0553 | 0.0100 | 0.0083 | 0.0073 |
0.331 | 0.8 | 1600 | 3.4866 | 40.0439 | 34.0777 | 0.0100 | 0.0084 | 0.0072 |
0.1882 | 0.9 | 1800 | 3.4982 | 40.0805 | 34.1001 | 0.0100 | 0.0079 | 0.0075 |
0.1013 | 1.0 | 2000 | 3.4985 | 40.4100 | 34.3391 | 0.0102 | 0.0078 | 0.0077 |
Framework versions
- PEFT 0.17.0
- Transformers 4.54.1
- Pytorch 2.8.0.dev20250319+cu128
- Datasets 3.6.0
- Tokenizers 0.21.4
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support