metadata
library_name: peft
language:
- en
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- wft
- whisper
- automatic-speech-recognition
- audio
- speech
- generated_from_trainer
datasets:
- ntnu-smil/sandi2025-ds
metrics:
- wer
model-index:
- name: whisper-large-v3-sandi-train-dev-1-pure-transcript
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: ntnu-smil/sandi2025-ds
type: ntnu-smil/sandi2025-ds
metrics:
- type: wer
value: 65.39948134905774
name: Wer
whisper-large-v3-sandi-train-dev-1-pure-transcript
This model is a fine-tuned version of openai/whisper-large-v3 on the ntnu-smil/sandi2025-ds dataset. It achieves the following results on the evaluation set:
- Loss: 1.0261
- Wer: 65.3995
- Cer: 213.4907
- Decode Runtime: 248.5027
- Wer Runtime: 0.1970
- Cer Runtime: 0.4672
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 1024
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.98) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 28
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Decode Runtime | Wer Runtime | Cer Runtime |
---|---|---|---|---|---|---|---|---|
1.9028 | 1.0357 | 7 | 1.3667 | 66.9265 | 208.4993 | 242.8888 | 0.2264 | 0.5201 |
1.2484 | 2.0714 | 14 | 1.1791 | 77.8309 | 225.9183 | 246.8109 | 0.1974 | 0.4752 |
1.0689 | 3.1071 | 21 | 1.0594 | 69.5579 | 217.8173 | 249.6101 | 0.1961 | 0.4627 |
1.0336 | 4.1429 | 28 | 1.0261 | 65.3995 | 213.4907 | 248.5027 | 0.1970 | 0.4672 |
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.4.1+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1