JacobLinCool's picture
End of training
5a196b8 verified
metadata
library_name: peft
language:
  - en
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - wft
  - whisper
  - automatic-speech-recognition
  - audio
  - speech
  - generated_from_trainer
datasets:
  - ntnu-smil/sandi2025-ds
metrics:
  - wer
model-index:
  - name: whisper-large-v3-sandi-train-dev-1-pure-transcript
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: ntnu-smil/sandi2025-ds
          type: ntnu-smil/sandi2025-ds
        metrics:
          - type: wer
            value: 65.39948134905774
            name: Wer

whisper-large-v3-sandi-train-dev-1-pure-transcript

This model is a fine-tuned version of openai/whisper-large-v3 on the ntnu-smil/sandi2025-ds dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0261
  • Wer: 65.3995
  • Cer: 213.4907
  • Decode Runtime: 248.5027
  • Wer Runtime: 0.1970
  • Cer Runtime: 0.4672

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 1024
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.98) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • training_steps: 28

Training results

Training Loss Epoch Step Validation Loss Wer Cer Decode Runtime Wer Runtime Cer Runtime
1.9028 1.0357 7 1.3667 66.9265 208.4993 242.8888 0.2264 0.5201
1.2484 2.0714 14 1.1791 77.8309 225.9183 246.8109 0.1974 0.4752
1.0689 3.1071 21 1.0594 69.5579 217.8173 249.6101 0.1961 0.4627
1.0336 4.1429 28 1.0261 65.3995 213.4907 248.5027 0.1970 0.4672

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.4.1+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1