Text Generation
Transformers
Safetensors
English
Inductive
Reasoning
ReDis-Llama / README.md
nsadeq's picture
Update README.md
5cd9f30 verified
---
library_name: transformers
tags:
- Inductive
- Reasoning
language:
- en
base_model:
- meta-llama/Meta-Llama-3-8B-Instruct
pipeline_tag: text-generation
datasets:
- nsadeq/redis_generate_rule_alignment
- nsadeq/redis_generate_rule_sft
- nsadeq/redis_follow_rule_sft
---
# Model Card for Model ID
ReDis-Llama is trained for improved inductive reasoning performance.
### Model Description
- **Developed by:** Nafis Sadeq
- **Language(s) (NLP):** English
- **Finetuned from model:** meta-llama/Meta-Llama-3-8B-Instruct
### Model Sources [optional]
- **Repository:** https://github.com/NafisSadeq/reasoning-distillation
- **Paper:** https://arxiv.org/abs/2504.10647
## How to Get Started with the Model
Follow the instructions here: https://github.com/NafisSadeq/reasoning-distillation
## Training Details
Training details can be found in the paper: https://arxiv.org/abs/2504.10647
## Environmental Impact
- **Hardware Type:** 2 × 48 GB Nvidia RTX A6000 GPUs
- **Hours used:** 72 hours
### Model Architecture and Objective
This model has the same architecture as meta-llama/Meta-Llama-3-8B-Instruct
### Compute Infrastructure
2 × 48 GB Nvidia RTX A6000 GPUs
## Citation
If you use this model, please cite the following paper.
@misc{sadeq2025improvingincontextlearningreasoning,
title={Improving In-Context Learning with Reasoning Distillation},
author={Nafis Sadeq and Xin Xu and Zhouhang Xie and Julian McAuley and Byungkyu Kang and Prarit Lamba and Xiang Gao},
year={2025},
eprint={2504.10647},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2504.10647},
}