YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Eagle-3 Speculator for Llama-3.3-70B-Instruct
This is an Eagle-3 speculator checkpoint converted to the speculators format.
Model Details
- Base Model: meta-llama/Llama-3.3-70B-Instruct
- Speculator Type: Eagle-3
- Draft Vocabulary Size: 32,000
- Target Vocabulary Size: 128,256
- Architecture: Single-layer transformer with vocabulary mapping
- Target Model Hidden Size: 8,192
- Draft Model Hidden Size: 6,144
Key Features
- Vocabulary Mapping: Maps between draft (32K) and target (128K) vocabularies
- Custom Attention: Modified attention layer accepting 2×hidden_size input
- Fusion Layer: Processes 3 verifier layers from target model (3×8192 → 6144)
- Optimized for 70B Models: Specifically configured for Llama-3.3-70B architecture
Usage
from speculators.models.eagle3 import Eagle3Speculator, Eagle3SpeculatorConfig
from transformers import AutoModelForCausalLM
# Load verifier model
verifier = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.3-70B-Instruct")
# Load Eagle-3 speculator
speculator = Eagle3Speculator.from_pretrained(
"nm-testing/EAGLE3-LLaMA3.3-Instruct-70B-speculators",
verifier=verifier
)
Configuration
This model uses the Eagle-3 architecture with:
- Hidden size: 6,144 (draft model)
- Target hidden size: 8,192 (70B Llama model)
- Attention heads: 48
- Key-value heads: 8
- Intermediate size: 16,384
- RMS norm epsilon: 1e-05
Original Model
Converted from: yuhuili/EAGLE3-LLaMA3.3-Instruct-70B
Citation
Based on the Eagle-3 paper: https://arxiv.org/abs/2503.01840
License
Please refer to the base Llama-3.3 model license.
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support