📄 AGV-LLM

Small enough to self-host, smart enough to 写巡检报告,分析缺陷数据
8 B bilingual model fine-tuned for tunnel-defect description & work-order drafting.
Works in both Transformers and Ollama.


✨ Highlights

Feature Details
🔧 Domain-specific 56 K 巡检对话 / 工单指令数据 / 数据分析
🧑‍🏫 LoRA fine-tuned QLoRA-NF4, Rank 8, α = 16
🈶 Bilingual 中文 ↔ English
Fast ~15 tok/s on RTX 4090 (fp16)
📦 Drop-in AutoModelForCausalLM or ollama pull mozihe/agv_llm

🛠️ Usage

Transformers

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch, textwrap

tok = AutoTokenizer.from_pretrained("mozihe/agv_llm")
model = AutoModelForCausalLM.from_pretrained(
    "mozihe/agv_llm", torch_dtype=torch.float16, device_map="auto"
)

prompt = (
  "请根据以下检测框信息,生成缺陷描述和整改建议:\\n"
  "位置:x=12.3,y=1.2,z=7.8\\n种类:裂缝\\n置信度:0.87"
)
inputs = tok(prompt, return_tensors="pt").to(model.device)
out = model.generate(**inputs, max_new_tokens=256, temperature=0.3)
print(textwrap.fill(tok.decode(out[0], skip_special_tokens=True), 80))

Ollama

  1. 构建本地模型并命名:
ollama create agv_llm -f Modelfile
  1. 运行:
ollama run agv_llm

说明


📚 Training Details

Item Value
Base Llama-3.1-8B
Method QLoRA (bitsandbytes NF4)
Steps 25 epochs
LR / Scheduler 1e-4 / cosine
Context 4 096 tokens
Precision bfloat16
Hardware 4 × A100-80 GB

✅ Intended Use

  • YOLO 检出 → 结构化缺陷描述
  • 生成整改建议 / 工单标题 / 优先级
  • 巡检知识库问答(RAG + Ollama)

❌ Out-of-scope

  • 医疗 / 法律结论
  • 任何未经人工复核的安全决策

⚠️ Limitations

  • 8 B 参数 ≠ GPT-4 级别推理深度
  • 训练域集中在隧道场景,泛化到其他土木结构有限
  • 多语种(非中英)支持较弱

📄 Citation

@misc{mozihe2025agvllm,
  title   = {AGV-LLM: A Domain LLM for Tunnel Inspection},
  author  = {Zhu, Junheng},
  year    = {2025},
  url     = {https://huggingface.co/mozihe/agv_llm}
}

📝 License

Apache 2.0 — 商用、私有部署皆可,保留版权与许可证即可。
若本模型帮你省掉一次组会汇报(不包ppt),欢迎 ⭐!

Downloads last month
5
Safetensors
Model size
8.03B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for mozihe/agv_llm

Finetuned
(1400)
this model