mmarron14's picture
End of training
16f8d8d verified
metadata
library_name: transformers
language:
  - es
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - fixie-ai/common_voice_17_0
metrics:
  - wer
model-index:
  - name: Whisper Medium CV17 Es 50 steps- María Marrón
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 17.0
          type: fixie-ai/common_voice_17_0
          args: 'config: es, split:test'
        metrics:
          - name: Wer
            type: wer
            value: 6.942025853850748

Whisper Medium CV17 Es 50 steps- María Marrón

This model is a fine-tuned version of openai/whisper-medium on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5798
  • Wer Ortho: 11.4657
  • Cer Ortho: 3.2862
  • Wer: 6.9420
  • Cer: 2.3005

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 5
  • training_steps: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Cer Ortho Wer Cer
2.9481 0.2 10 1.7270 12.0729 3.6802 7.1193 2.5784
1.3731 0.4 20 1.0923 11.5624 3.3599 6.9948 2.3544
0.9897 0.6 30 0.8008 11.6923 3.3918 7.0571 2.3674
0.7372 0.8 40 0.6473 11.4720 3.3122 6.9293 2.3112
0.6275 1.0 50 0.5798 11.4657 3.2862 6.9420 2.3005

Framework versions

  • Transformers 4.53.2
  • Pytorch 2.6.0+cu124
  • Datasets 2.14.4
  • Tokenizers 0.21.2