pandora-s's picture
Update to all readmes to be up to date
deedc86 verified
|
raw
history blame
6.93 kB
---
language:
- fr
- it
- de
- es
- en
license: apache-2.0
inference:
parameters:
temperature: 0.5
widget:
- messages:
- role: user
content: What is your favorite condiment?
---
# Model Card for Mixtral-8x7B-Instruct-v0.1
The Mixtral-8x7B Large Language Model (LLM) is a pretrained generative Sparse Mixture of Experts. The Mixtral-8x7B outperforms Llama 2 70B on most benchmarks we tested.
For full details of this model please read our [release blog post](https://mistral.ai/news/mixtral-of-experts/).
Mixtral-8x7B-Instruct-v0.1 has the following characteristics:
- 46.7B parameters
- 12.9B active parameters
- 32k context window
- 32000 vocab size
## How to use
It is recommended to use `mistralai/Mixtral-8x7B-Instruct-v0.1` with [mistral_inference](https://github.com/mistralai/mistral-inference) and [mistral_common](https://github.com/mistralai/mistral-common). For HF `transformers` code snippets, please keep scrolling.
## Generate with `mistral_inference` and `mistral_common`
### Install dependencies
```
pip install mistral_inference mistral_common
```
### Download model
```py
from huggingface_hub import snapshot_download
from pathlib import Path
mistral_models_path = Path.home().joinpath('mistral_models', '8x7B-Instruct-v0.1')
mistral_models_path.mkdir(parents=True, exist_ok=True)
snapshot_download(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", allow_patterns=["params.json", "consolidated.safetensors", "tokenizer.model"], local_dir=mistral_models_path)
```
### Chat
After installing `mistral_inference`, a `mistral-chat` CLI command should be available in your environment. You can chat with the model using
```
mistral-chat $HOME/mistral_models/8x7B-Instruct-v0.1 --instruct --max_tokens 256
```
### Instruct following
```py
from mistral_inference.model import Transformer
from mistral_inference.generate import generate
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.protocol.instruct.messages import UserMessage
from mistral_common.protocol.instruct.request import ChatCompletionRequest
tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tokenizer.model")
# tokenizer = MistralTokenizer.v1()
model = Transformer.from_folder(mistral_models_path)
completion_request = ChatCompletionRequest(messages=[UserMessage(content="Explain Machine Learning to me in a nutshell.")])
tokens = tokenizer.encode_chat_completion(completion_request).tokens
out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0])
print(result)
```
### Function calling
```py
from mistral_common.protocol.instruct.tool_calls import Function, Tool
from mistral_inference.model import Transformer
from mistral_inference.generate import generate
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.protocol.instruct.messages import UserMessage
from mistral_common.protocol.instruct.request import ChatCompletionRequest
tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tokenizer.model")
# tokenizer = MistralTokenizer.v1()
model = Transformer.from_folder(mistral_models_path)
completion_request = ChatCompletionRequest(
tools=[
Tool(
function=Function(
name="get_current_weather",
description="Get the current weather",
parameters={
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"format": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
"description": "The temperature unit to use. Infer this from the users location.",
},
},
"required": ["location", "format"],
},
)
)
],
messages=[
UserMessage(content="What's the weather like today in Paris?"),
],
)
tokens = tokenizer.encode_chat_completion(completion_request).tokens
out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0])
print(result)
```
## Generate with `transformers`
### Install dependencies
```
pip install transformers
```
### Instruct following
```py
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1")
model.to("cuda")
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1")
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
messages_prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
inputs = tokenizer(tool_use_prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=1000)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(result)
```
Or:
```py
from transformers import pipeline
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
chatbot = pipeline("text-generation", model="mistralai/Mixtral-8x7B-Instruct-v0.1")
result = chatbot(messages)
print(result)
```
## Limitations
The Mistral 8x22B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance.
It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to
make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.
## The Mistral AI Team
Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Antoine Roux, Arthur Mensch, Audrey Herblin-Stoop, Baptiste Bout, Baudouin de Monicault, Blanche Savary, Bam4d, Caroline Feldman, Devendra Singh Chaplot, Diego de las Casas, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona, Jean-Malo Delignon, Jia Li, Justus Murke, Louis Martin, Louis Ternon, Lucile Saulnier, Lélio Renard Lavaud, Margaret Jennings, Marie Pellat, Marie Torelli, Marie-Anne Lachaux, Nicolas Schuhl, Patrick von Platen, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le Scao, Thibaut Lavril, Timothée Lacroix, Théophile Gervet, Thomas Wang, Valera Nemychnikova, William El Sayed, William Marshall