|
--- |
|
library_name: peft |
|
license: llama3.2 |
|
base_model: meta-llama/Llama-3.2-3B-Instruct |
|
tags: |
|
- axolotl |
|
- generated_from_trainer |
|
datasets: |
|
- minpeter/xlam-function-calling-60k-hermes |
|
- minpeter/xlam-irrelevance-7.5k-qwen2.5-72b-distill-hermes |
|
- minpeter/bfcl-v1-non-live-ast-hermes |
|
model-index: |
|
- name: m-3b-v1-iteration-00-sf-xlam-06 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.7.0` |
|
```yaml |
|
base_model: meta-llama/Llama-3.2-3B-Instruct |
|
hub_model_id: morsmordre/m-3b-v1-iteration-00-sf-xlam-06 |
|
|
|
load_in_8bit: false |
|
load_in_4bit: false |
|
strict: false |
|
|
|
datasets: |
|
- path: minpeter/xlam-function-calling-60k-hermes |
|
data_files: |
|
- result.parquet |
|
type: chat_template |
|
chat_template: llama3 |
|
field_messages: conversations |
|
message_field_role: from |
|
message_field_content: value |
|
shards: 30 |
|
- path: minpeter/xlam-irrelevance-7.5k-qwen2.5-72b-distill-hermes |
|
data_files: |
|
- result.parquet |
|
type: chat_template |
|
chat_template: llama3 |
|
field_messages: conversations |
|
message_field_role: from |
|
message_field_content: value |
|
shards: 6 |
|
- path: minpeter/bfcl-v1-non-live-ast-hermes |
|
data_files: |
|
- result.parquet |
|
type: chat_template |
|
chat_template: llama3 |
|
field_messages: conversations |
|
message_field_role: from |
|
message_field_content: value |
|
|
|
chat_template: llama3 |
|
|
|
dataset_prepared_path: last_run_prepared |
|
|
|
output_dir: ./output |
|
|
|
adapter: lora |
|
lora_model_dir: |
|
|
|
sequence_len: 4096 |
|
pad_to_sequence_len: true |
|
sample_packing: true |
|
|
|
val_set_size: 0.05 |
|
eval_sample_packing: true |
|
evals_per_epoch: 3 |
|
|
|
lora_r: 8 |
|
lora_alpha: 16 |
|
lora_dropout: 0.05 |
|
lora_fan_in_fan_out: |
|
lora_target_modules: |
|
- gate_proj |
|
- down_proj |
|
- up_proj |
|
- q_proj |
|
- v_proj |
|
- k_proj |
|
- o_proj |
|
|
|
wandb_project: "axolotl" |
|
wandb_entity: "kasfiekfs-e" |
|
wandb_watch: |
|
wandb_name: |
|
wandb_log_model: |
|
|
|
gradient_accumulation_steps: 2 |
|
micro_batch_size: 2 |
|
num_epochs: 1 |
|
optimizer: adamw_8bit |
|
lr_scheduler: cosine |
|
learning_rate: 0.0002 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: auto |
|
fp16: |
|
tf32: false |
|
|
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
loss_watchdog_threshold: 5.0 |
|
loss_watchdog_patience: 3 |
|
|
|
warmup_steps: 10 |
|
saves_per_epoch: 1 |
|
debug: |
|
deepspeed: |
|
weight_decay: 0.0 |
|
fsdp: |
|
fsdp_config: |
|
|
|
special_tokens: |
|
pad_token: "<|finetune_right_pad_id|>" |
|
``` |
|
|
|
</details><br> |
|
|
|
# m-3b-v1-iteration-00-sf-xlam-06 |
|
|
|
This model is a fine-tuned version of [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) on the minpeter/xlam-function-calling-60k-hermes, the minpeter/xlam-irrelevance-7.5k-qwen2.5-72b-distill-hermes and the minpeter/bfcl-v1-non-live-ast-hermes datasets. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1362 |
|
|
|
## Model description |
|
|
|
| Test Type (bfcl) | Base Model Accuracy | This Adapter Accuracy | Improvement | |
|
| ----------------- | ------------------- | --------------------- | ----------- | |
|
| irrelevance | 72.08 | 74.17 | +2.09 | |
|
| parallel_multiple | 10.00 | 90.00 | +80.00 | |
|
| parallel | 11.50 | 92.00 | +80.50 | |
|
| simple | 24.75 | 95.00 | +70.25 | |
|
| multiple | 20.00 | 93.50 | +73.50 | |
|
|
|
|
|
## Inference |
|
|
|
```sh |
|
vllm serve meta-llama/Llama-3.2-3B-Instruct \ |
|
--enable-auto-tool-choice --tool-call-parser llama_hermes --tool-parser-plugin github.com/minpeter/hermes-llama-parse/lh_tool_parser.py \ |
|
--port 4000 --enable-lora --lora-modules tool='morsmordre/m-3b-v1-iteration-00-sf-xlam-06' |
|
``` |
|
|
|
*The hermes parser of the existing vllm expects the text <tool_call> and </tool_call> to exist as a single token in the vocab, so a modified "llama_hermes" parser is required. As of v0.7.3, you can inject the plugin using the --tool-parser-plugin flag.* |
|
|
|
## Model Evaluation Results |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 4 |
|
- optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 1.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
| :-----------: | :----: | :---: | :-------------: | |
|
| 0.6162 | 0.0059 | 1 | 0.4366 | |
|
| 0.2323 | 0.3343 | 57 | 0.1475 | |
|
| 0.1065 | 0.6686 | 114 | 0.1362 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.14.0 |
|
- Transformers 4.48.3 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|