Add files helpful for fine-tuning
#6
by
fepegar
- opened
- README.md +68 -4
- augmentations.py +147 -0
- backbone_compatible.safetensors +3 -0
- dino_head.safetensors +3 -0
- ssl_default_config.yaml +135 -0
- vitb14_cxr.yaml +31 -0
README.md
CHANGED
@@ -58,6 +58,8 @@ Underlying biases of the training datasets may not be well characterized.
|
|
58 |
|
59 |
## Getting started
|
60 |
|
|
|
|
|
61 |
Let us first write an auxiliary function to download a chest X-ray.
|
62 |
|
63 |
```python
|
@@ -73,6 +75,8 @@ Let us first write an auxiliary function to download a chest X-ray.
|
|
73 |
...
|
74 |
```
|
75 |
|
|
|
|
|
76 |
Now let us download the model and encode an image.
|
77 |
|
78 |
```python
|
@@ -82,13 +86,17 @@ Now let us download the model and encode an image.
|
|
82 |
>>>
|
83 |
>>> # Download the model
|
84 |
>>> repo = "microsoft/rad-dino"
|
85 |
-
>>>
|
86 |
>>>
|
87 |
>>> # The processor takes a PIL image, performs resizing, center-cropping, and
|
88 |
>>> # intensity normalization using stats from MIMIC-CXR, and returns a
|
89 |
>>> # dictionary with a PyTorch tensor ready for the encoder
|
90 |
>>> processor = AutoImageProcessor.from_pretrained(repo)
|
91 |
-
|
|
|
|
|
|
|
|
|
92 |
>>> # Download and preprocess a chest X-ray
|
93 |
>>> image = download_sample_image()
|
94 |
>>> image.size # (width, height)
|
@@ -97,7 +105,7 @@ Now let us download the model and encode an image.
|
|
97 |
>>>
|
98 |
>>> # Encode the image!
|
99 |
>>> with torch.inference_mode():
|
100 |
-
>>> outputs =
|
101 |
>>>
|
102 |
>>> # Look at the CLS embeddings
|
103 |
>>> cls_embeddings = outputs.pooler_output
|
@@ -124,6 +132,62 @@ We will use [`einops`](https://einops.rocks/) (install with `pip install einops`
|
|
124 |
torch.Size([1, 768, 37, 37])
|
125 |
```
|
126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
## Training details
|
128 |
|
129 |
### Training data
|
@@ -225,4 +289,4 @@ We used [SimpleITK](https://simpleitk.org/) and [Pydicom](https://pydicom.github
|
|
225 |
|
226 |
## Model card contact
|
227 |
|
228 |
-
Fernando Pérez-García ([`fperezgarcia@microsoft.com`](mailto:fperezgarcia@microsoft.com)).
|
|
|
58 |
|
59 |
## Getting started
|
60 |
|
61 |
+
### Get some data
|
62 |
+
|
63 |
Let us first write an auxiliary function to download a chest X-ray.
|
64 |
|
65 |
```python
|
|
|
75 |
...
|
76 |
```
|
77 |
|
78 |
+
### Load the model
|
79 |
+
|
80 |
Now let us download the model and encode an image.
|
81 |
|
82 |
```python
|
|
|
86 |
>>>
|
87 |
>>> # Download the model
|
88 |
>>> repo = "microsoft/rad-dino"
|
89 |
+
>>> rad_dino = AutoModel.from_pretrained(repo)
|
90 |
>>>
|
91 |
>>> # The processor takes a PIL image, performs resizing, center-cropping, and
|
92 |
>>> # intensity normalization using stats from MIMIC-CXR, and returns a
|
93 |
>>> # dictionary with a PyTorch tensor ready for the encoder
|
94 |
>>> processor = AutoImageProcessor.from_pretrained(repo)
|
95 |
+
```
|
96 |
+
|
97 |
+
### Encode an image
|
98 |
+
|
99 |
+
```python
|
100 |
>>> # Download and preprocess a chest X-ray
|
101 |
>>> image = download_sample_image()
|
102 |
>>> image.size # (width, height)
|
|
|
105 |
>>>
|
106 |
>>> # Encode the image!
|
107 |
>>> with torch.inference_mode():
|
108 |
+
>>> outputs = rad_dino(**inputs)
|
109 |
>>>
|
110 |
>>> # Look at the CLS embeddings
|
111 |
>>> cls_embeddings = outputs.pooler_output
|
|
|
132 |
torch.Size([1, 768, 37, 37])
|
133 |
```
|
134 |
|
135 |
+
### Weights for fine-tuning
|
136 |
+
|
137 |
+
We have released a checkpoint compatible with
|
138 |
+
[the original DINOv2 code](https://github.com/facebookresearch/dinov2) to help
|
139 |
+
researchers fine-tune our model.
|
140 |
+
|
141 |
+
First, let us write code to load a
|
142 |
+
[`safetensors` checkpoint](https://huggingface.co/docs/safetensors).
|
143 |
+
|
144 |
+
```python
|
145 |
+
>>> import safetensors
|
146 |
+
>>> def safetensors_to_state_dict(checkpoint_path: str) -> dict[str, torch.Tensor]:
|
147 |
+
... state_dict = {}
|
148 |
+
... with safe_open(checkpoint_path, framework="pt") as ckpt_file:
|
149 |
+
... for key in ckpt_file.keys():
|
150 |
+
... state_dict[key] = ckpt_file.get_tensor(key)
|
151 |
+
... return state_dict
|
152 |
+
...
|
153 |
+
```
|
154 |
+
|
155 |
+
We can now use the hub model and load the RAD-DINO weights.
|
156 |
+
Let's clone the DINOv2 repository so we can import the code for the head.
|
157 |
+
|
158 |
+
```shell
|
159 |
+
git clone https://github.com/facebookresearch/dinov2.git
|
160 |
+
cd dinov2
|
161 |
+
```
|
162 |
+
|
163 |
+
```python
|
164 |
+
>>> import torch
|
165 |
+
>>> rad_dino_gh = torch.hub.load(".", "dinov2_vitb14")
|
166 |
+
>>> backbone_state_dict = safetensors_to_state_dict("backbone_compatible.safetensors")
|
167 |
+
>>> rad_dino_gh.load_state_dict(backbone_state_dict, strict=True)
|
168 |
+
<All keys matched successfully>
|
169 |
+
```
|
170 |
+
|
171 |
+
The weights of the head are also released:
|
172 |
+
|
173 |
+
```python
|
174 |
+
>>> from dinov2.layers import DINOHead
|
175 |
+
>>> rad_dino_head_gh = DINOHead(
|
176 |
+
... in_dim=768,
|
177 |
+
... out_dim=65536,
|
178 |
+
... hidden_dim=2048,
|
179 |
+
... bottleneck_dim=256,
|
180 |
+
... nlayers=3,
|
181 |
+
... )
|
182 |
+
>>> head_state_dict = safetensors_to_state_dict("dino_head.safetensors")
|
183 |
+
>>> rad_dino_head_gh.load_state_dict(head_state_dict, strict=True)
|
184 |
+
<All keys matched successfully>
|
185 |
+
```
|
186 |
+
|
187 |
+
### Configs and augmentation
|
188 |
+
|
189 |
+
The configuration files [`ssl_default_config.yaml`](./ssl_default_config.yaml) and [`vitb14_cxr.yaml`](./vitb14_cxr.yaml), and the [`augmentations`](./augmentations.py) module are also available in the repository to help researchers reproduce the training procedure with our hyperparameters.
|
190 |
+
|
191 |
## Training details
|
192 |
|
193 |
### Training data
|
|
|
289 |
|
290 |
## Model card contact
|
291 |
|
292 |
+
Fernando Pérez-García ([`fperezgarcia@microsoft.com`](mailto:fperezgarcia@microsoft.com)).
|
augmentations.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation. All rights reserved.
|
2 |
+
# See LICENSE in the repo root for license information.
|
3 |
+
#
|
4 |
+
# Portions:
|
5 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
6 |
+
#
|
7 |
+
# This source code is licensed under the Apache License, Version 2.0
|
8 |
+
# found in the LICENSE file in the root directory of this source tree.
|
9 |
+
|
10 |
+
import logging
|
11 |
+
|
12 |
+
from PIL import Image
|
13 |
+
from torchvision import transforms
|
14 |
+
|
15 |
+
from .transforms import (
|
16 |
+
GaussianBlur,
|
17 |
+
MaybeToTensor,
|
18 |
+
make_normalize_transform,
|
19 |
+
)
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.getLogger("dinov2")
|
23 |
+
|
24 |
+
|
25 |
+
class DataAugmentationDINO(object):
|
26 |
+
def __init__(
|
27 |
+
self,
|
28 |
+
global_crops_scale,
|
29 |
+
local_crops_scale,
|
30 |
+
local_crops_number,
|
31 |
+
global_crops_size=224,
|
32 |
+
local_crops_size=96,
|
33 |
+
):
|
34 |
+
self.global_crops_scale = global_crops_scale
|
35 |
+
self.local_crops_scale = local_crops_scale
|
36 |
+
self.local_crops_number = local_crops_number
|
37 |
+
self.global_crops_size = global_crops_size
|
38 |
+
self.local_crops_size = local_crops_size
|
39 |
+
|
40 |
+
logger.info("###################################")
|
41 |
+
logger.info("Using data augmentation parameters:")
|
42 |
+
logger.info(f"global_crops_scale: {global_crops_scale}")
|
43 |
+
logger.info(f"local_crops_scale: {local_crops_scale}")
|
44 |
+
logger.info(f"local_crops_number: {local_crops_number}")
|
45 |
+
logger.info(f"global_crops_size: {global_crops_size}")
|
46 |
+
logger.info(f"local_crops_size: {local_crops_size}")
|
47 |
+
logger.info("###################################")
|
48 |
+
|
49 |
+
# random resized crop and flip
|
50 |
+
self.geometric_augmentation_global = transforms.Compose(
|
51 |
+
[
|
52 |
+
transforms.RandomResizedCrop(
|
53 |
+
global_crops_size, scale=global_crops_scale, interpolation=transforms.InterpolationMode.BICUBIC
|
54 |
+
),
|
55 |
+
transforms.RandomHorizontalFlip(p=0.5),
|
56 |
+
]
|
57 |
+
)
|
58 |
+
|
59 |
+
self.geometric_augmentation_local = transforms.Compose(
|
60 |
+
[
|
61 |
+
transforms.RandomResizedCrop(
|
62 |
+
local_crops_size, scale=local_crops_scale, interpolation=transforms.InterpolationMode.BICUBIC
|
63 |
+
),
|
64 |
+
transforms.RandomHorizontalFlip(p=0.5),
|
65 |
+
]
|
66 |
+
)
|
67 |
+
|
68 |
+
# color distorsions / blurring
|
69 |
+
color_jittering = transforms.Compose(
|
70 |
+
[
|
71 |
+
transforms.RandomApply(
|
72 |
+
[transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.2, hue=0.1)],
|
73 |
+
p=0.8,
|
74 |
+
),
|
75 |
+
transforms.RandomGrayscale(p=0.2),
|
76 |
+
]
|
77 |
+
)
|
78 |
+
|
79 |
+
global_transfo1_extra = GaussianBlur(p=0.5)
|
80 |
+
|
81 |
+
global_transfo2_extra = transforms.Compose(
|
82 |
+
[
|
83 |
+
GaussianBlur(p=0.1),
|
84 |
+
]
|
85 |
+
)
|
86 |
+
|
87 |
+
local_transfo_extra = GaussianBlur(p=0.5)
|
88 |
+
|
89 |
+
# normalization
|
90 |
+
self.normalize = transforms.Compose(
|
91 |
+
[
|
92 |
+
MaybeToTensor(),
|
93 |
+
make_normalize_transform(),
|
94 |
+
]
|
95 |
+
)
|
96 |
+
|
97 |
+
self.global_transfo1 = transforms.Compose([color_jittering, global_transfo1_extra, self.normalize])
|
98 |
+
self.global_transfo2 = transforms.Compose([color_jittering, global_transfo2_extra, self.normalize])
|
99 |
+
self.local_transfo = transforms.Compose([color_jittering, local_transfo_extra, self.normalize])
|
100 |
+
|
101 |
+
def __call__(self, image):
|
102 |
+
output = {}
|
103 |
+
|
104 |
+
# global crops:
|
105 |
+
im1_base = self.geometric_augmentation_global(image)
|
106 |
+
global_crop_1 = self.global_transfo1(im1_base)
|
107 |
+
|
108 |
+
im2_base = self.geometric_augmentation_global(image)
|
109 |
+
global_crop_2 = self.global_transfo2(im2_base)
|
110 |
+
|
111 |
+
output["global_crops"] = [global_crop_1, global_crop_2]
|
112 |
+
|
113 |
+
# global crops for teacher:
|
114 |
+
output["global_crops_teacher"] = [global_crop_1, global_crop_2]
|
115 |
+
|
116 |
+
# local crops:
|
117 |
+
local_crops = [
|
118 |
+
self.local_transfo(self.geometric_augmentation_local(image)) for _ in range(self.local_crops_number)
|
119 |
+
]
|
120 |
+
output["local_crops"] = local_crops
|
121 |
+
output["offsets"] = ()
|
122 |
+
|
123 |
+
return output
|
124 |
+
|
125 |
+
|
126 |
+
def get_online_classification_augmentation_from_config(cfg) -> transforms.Compose:
|
127 |
+
augmentation_config = cfg.evaluation.online.augmentation
|
128 |
+
interpolation = getattr(Image.Resampling, augmentation_config.interpolation)
|
129 |
+
resize_size = crop_size = cfg.crops.global_crops_size
|
130 |
+
resize = transforms.Resize(resize_size, interpolation=interpolation)
|
131 |
+
crop = transforms.CenterCrop(crop_size)
|
132 |
+
affine = transforms.RandomAffine(
|
133 |
+
degrees=augmentation_config.degrees,
|
134 |
+
scale=augmentation_config.scale,
|
135 |
+
shear=augmentation_config.shear,
|
136 |
+
interpolation=interpolation,
|
137 |
+
)
|
138 |
+
transforms_list = [
|
139 |
+
resize,
|
140 |
+
crop,
|
141 |
+
affine,
|
142 |
+
MaybeToTensor(),
|
143 |
+
make_normalize_transform(),
|
144 |
+
]
|
145 |
+
if augmentation_config.horizontal_flip:
|
146 |
+
transforms_list.append(transforms.RandomHorizontalFlip())
|
147 |
+
return transforms.Compose(transforms_list)
|
backbone_compatible.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1eac0464b2a00d368aa3eea1dc029964b10320fbabc59a8a4e768c43a23d26f4
|
3 |
+
size 346338024
|
dino_head.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b3599663464ed1054f7777f547db02f518581acc5becdd3eddffc8c507f3778
|
3 |
+
size 92554920
|
ssl_default_config.yaml
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MODEL:
|
2 |
+
WEIGHTS: ''
|
3 |
+
compute_precision:
|
4 |
+
grad_scaler: true
|
5 |
+
teacher:
|
6 |
+
backbone:
|
7 |
+
sharding_strategy: SHARD_GRAD_OP
|
8 |
+
mixed_precision:
|
9 |
+
param_dtype: fp16
|
10 |
+
reduce_dtype: fp16
|
11 |
+
buffer_dtype: fp32
|
12 |
+
dino_head:
|
13 |
+
sharding_strategy: SHARD_GRAD_OP
|
14 |
+
mixed_precision:
|
15 |
+
param_dtype: fp16
|
16 |
+
reduce_dtype: fp16
|
17 |
+
buffer_dtype: fp32
|
18 |
+
ibot_head:
|
19 |
+
sharding_strategy: SHARD_GRAD_OP
|
20 |
+
mixed_precision:
|
21 |
+
param_dtype: fp16
|
22 |
+
reduce_dtype: fp16
|
23 |
+
buffer_dtype: fp32
|
24 |
+
student:
|
25 |
+
backbone:
|
26 |
+
sharding_strategy: SHARD_GRAD_OP
|
27 |
+
mixed_precision:
|
28 |
+
param_dtype: fp16
|
29 |
+
reduce_dtype: fp16
|
30 |
+
buffer_dtype: fp32
|
31 |
+
dino_head:
|
32 |
+
sharding_strategy: SHARD_GRAD_OP
|
33 |
+
mixed_precision:
|
34 |
+
param_dtype: fp16
|
35 |
+
reduce_dtype: fp32
|
36 |
+
buffer_dtype: fp32
|
37 |
+
ibot_head:
|
38 |
+
sharding_strategy: SHARD_GRAD_OP
|
39 |
+
mixed_precision:
|
40 |
+
param_dtype: fp16
|
41 |
+
reduce_dtype: fp32
|
42 |
+
buffer_dtype: fp32
|
43 |
+
dino:
|
44 |
+
loss_weight: 1.0
|
45 |
+
head_n_prototypes: 65536
|
46 |
+
head_bottleneck_dim: 256
|
47 |
+
head_nlayers: 3
|
48 |
+
head_hidden_dim: 2048
|
49 |
+
koleo_loss_weight: 0.1
|
50 |
+
ibot:
|
51 |
+
loss_weight: 1.0
|
52 |
+
mask_sample_probability: 0.5
|
53 |
+
mask_ratio_min_max:
|
54 |
+
- 0.1
|
55 |
+
- 0.5
|
56 |
+
separate_head: false
|
57 |
+
head_n_prototypes: 65536
|
58 |
+
head_bottleneck_dim: 256
|
59 |
+
head_nlayers: 3
|
60 |
+
head_hidden_dim: 2048
|
61 |
+
train:
|
62 |
+
batch_size_per_gpu: 64
|
63 |
+
dataset_path: ImageNet:split=TRAIN
|
64 |
+
output_dir: .
|
65 |
+
saveckp_every_n_epoch: 5
|
66 |
+
seed: 0
|
67 |
+
num_workers: 10
|
68 |
+
OFFICIAL_EPOCH_LENGTH: 0 # automatic rescaling based on the dataset len is applied if this is set to 0
|
69 |
+
cache_dataset: true
|
70 |
+
centering: "centering" # or "sinkhorn_knopp"
|
71 |
+
student:
|
72 |
+
arch: vit_large
|
73 |
+
patch_size: 16
|
74 |
+
drop_block_rate: 0.0
|
75 |
+
drop_path_rate: 0.3
|
76 |
+
layerscale: 1.0e-05
|
77 |
+
drop_path_uniform: true
|
78 |
+
pretrained_weights: ''
|
79 |
+
ffn_layer: "mlp"
|
80 |
+
block_chunks: 0
|
81 |
+
qkv_bias: true
|
82 |
+
proj_bias: true
|
83 |
+
ffn_bias: true
|
84 |
+
num_register_tokens: 0
|
85 |
+
interpolate_antialias: false
|
86 |
+
interpolate_offset: 0.1
|
87 |
+
load_weights: true
|
88 |
+
checkpoints_dir: null
|
89 |
+
teacher:
|
90 |
+
momentum_teacher: 0.992
|
91 |
+
final_momentum_teacher: 1
|
92 |
+
warmup_teacher_temp: 0.04
|
93 |
+
teacher_temp: 0.07
|
94 |
+
warmup_teacher_temp_epochs: 30
|
95 |
+
optim:
|
96 |
+
epochs: 100
|
97 |
+
weight_decay: 0.04
|
98 |
+
weight_decay_end: 0.4
|
99 |
+
base_lr: 0.004 # learning rate for a batch size of 1024
|
100 |
+
lr: 0. # will be set after applying scaling rule
|
101 |
+
warmup_epochs: 10
|
102 |
+
min_lr: 1.0e-06
|
103 |
+
clip_grad: 3.0
|
104 |
+
freeze_last_layer_epochs: 1
|
105 |
+
scaling_rule: sqrt_wrt_1024
|
106 |
+
patch_embed_lr_mult: 0.2
|
107 |
+
layerwise_decay: 0.9
|
108 |
+
adamw_beta1: 0.9
|
109 |
+
adamw_beta2: 0.999
|
110 |
+
crops:
|
111 |
+
global_crops_scale:
|
112 |
+
- 0.32
|
113 |
+
- 1.0
|
114 |
+
local_crops_number: 8
|
115 |
+
local_crops_scale:
|
116 |
+
- 0.05
|
117 |
+
- 0.32
|
118 |
+
global_crops_size: 224
|
119 |
+
local_crops_size: 96
|
120 |
+
evaluation:
|
121 |
+
eval_period_iterations: 12500
|
122 |
+
dataset_str: None
|
123 |
+
online: # see dinov2.eval.linear_callback for documentation
|
124 |
+
learning_rate: 1e-6 # will be multiplied by batch size and number of devices
|
125 |
+
num_last_blocks: 1
|
126 |
+
add_avg_pool: true
|
127 |
+
num_update_epochs_per_eval: 3
|
128 |
+
augmentation:
|
129 |
+
degrees: 30
|
130 |
+
scale:
|
131 |
+
- 0.8
|
132 |
+
- 1.2
|
133 |
+
shear: 15
|
134 |
+
interpolation: BICUBIC
|
135 |
+
horizontal_flip: true
|
vitb14_cxr.yaml
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# this corresponds to the CXR config
|
2 |
+
train:
|
3 |
+
batch_size_per_gpu: 40 # For nodes with v100s (32 GB), use 20.
|
4 |
+
saveckp_every_n_epoch: 25
|
5 |
+
student:
|
6 |
+
arch: vit_base
|
7 |
+
block_chunks: 4
|
8 |
+
patch_size: 14
|
9 |
+
drop_block_rate: 0.00
|
10 |
+
drop_path_rate: 0.30
|
11 |
+
teacher:
|
12 |
+
warmup_teacher_temp_epochs: 50
|
13 |
+
optim:
|
14 |
+
epochs: 100
|
15 |
+
warmup_epochs: 5
|
16 |
+
base_lr: 0.001
|
17 |
+
evaluation:
|
18 |
+
eval_period_iterations: 300
|
19 |
+
tasks: # from the metadata.csv file of the CANDID processed dataset
|
20 |
+
- pneumothorax
|
21 |
+
crops:
|
22 |
+
global_crops_size: 518
|
23 |
+
local_crops_size: 196
|
24 |
+
global_crops_scale:
|
25 |
+
- 0.50
|
26 |
+
- 1.00
|
27 |
+
local_crops_number: 8
|
28 |
+
local_crops_scale:
|
29 |
+
- 0.20
|
30 |
+
- 0.50
|
31 |
+
pretrained: true
|