ME

meigel
Β·

AI & ML interests

None yet

Recent Activity

liked a model 23 days ago
rasbt/llama-3.2-from-scratch
liked a model 23 days ago
all-hands/openhands-lm-32b-v0.1
liked a Space about 1 month ago
smolagents/smolagents-leaderboard
View all activity

Organizations

None yet

meigel's activity

reacted to Kseniase's post with πŸš€ about 1 month ago
view post
Post
7831
15 types of attention mechanisms

Attention mechanisms allow models to dynamically focus on specific parts of their input when performing tasks. In our recent article, we discussed Multi-Head Latent Attention (MLA) in detail and now it's time to summarize other existing types of attention.

Here is a list of 15 types of attention mechanisms used in AI models:

1. Soft attention (Deterministic attention) -> Neural Machine Translation by Jointly Learning to Align and Translate (1409.0473)
Assigns a continuous weight distribution over all parts of the input. It produces a weighted sum of the input using attention weights that sum to 1.

2. Hard attention (Stochastic attention) -> Effective Approaches to Attention-based Neural Machine Translation (1508.04025)
Makes a discrete selection of some part of the input to focus on at each step, rather than attending to everything.

3. Self-attention -> Attention Is All You Need (1706.03762)
Each element in the sequence "looks" at other elements and "decides" how much to borrow from each of them for its new representation.

4. Cross-Attention (Encoder-Decoder attention) -> Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation (2104.08771)
The queries come from one sequence and the keys/values come from another sequence. It allows a model to combine information from two different sources.

5. Multi-Head Attention (MHA) -> Attention Is All You Need (1706.03762)
Multiple attention β€œheads” are run in parallel.​ The model computes several attention distributions (heads), each with its own set of learned projections of queries, keys, and values.

6. Multi-Head Latent Attention (MLA) -> DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model (2405.04434)
Extends MHA by incorporating a latent space where attention heads can dynamically learn different latent factors or representations.

7. Memory-Based attention -> End-To-End Memory Networks (1503.08895)
Involves an external memory and uses attention to read from and write to this memory.

See other types in the comments πŸ‘‡
  • 1 reply
Β·
updated a collection about 2 months ago
updated a collection about 2 months ago
upvoted an article about 2 months ago
view article
Article

Open-R1: a fully open reproduction of DeepSeek-R1

β€’ 845
updated a collection about 2 months ago