msa_prot_t5_repr_seq
This model is a fine-tuned version of Rostlab/prot_t5_xl_uniref50 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.8396
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 1.0 | 10 | 2.9787 |
No log | 2.0 | 20 | 2.9960 |
No log | 3.0 | 30 | 2.9192 |
No log | 4.0 | 40 | 2.9534 |
3.0706 | 5.0 | 50 | 2.9662 |
3.0706 | 6.0 | 60 | 2.9160 |
3.0706 | 7.0 | 70 | 2.9198 |
3.0706 | 8.0 | 80 | 2.9258 |
3.0706 | 9.0 | 90 | 2.8992 |
2.9097 | 10.0 | 100 | 2.8073 |
2.9097 | 11.0 | 110 | 2.8701 |
2.9097 | 12.0 | 120 | 2.8366 |
2.9097 | 13.0 | 130 | 2.7131 |
2.9097 | 14.0 | 140 | 2.7704 |
2.8396 | 15.0 | 150 | 2.9375 |
2.8396 | 16.0 | 160 | 2.7965 |
2.8396 | 17.0 | 170 | 2.7563 |
2.8396 | 18.0 | 180 | 2.8374 |
2.8396 | 19.0 | 190 | 2.7491 |
2.8057 | 20.0 | 200 | 2.6914 |
2.8057 | 21.0 | 210 | 2.7746 |
2.8057 | 22.0 | 220 | 2.8187 |
2.8057 | 23.0 | 230 | 2.9719 |
2.8057 | 24.0 | 240 | 2.8489 |
2.8127 | 25.0 | 250 | 2.8719 |
2.8127 | 26.0 | 260 | 2.8749 |
2.8127 | 27.0 | 270 | 2.7897 |
2.8127 | 28.0 | 280 | 2.8159 |
2.8127 | 29.0 | 290 | 2.8765 |
2.7912 | 30.0 | 300 | 2.7582 |
2.7912 | 31.0 | 310 | 2.7970 |
2.7912 | 32.0 | 320 | 2.8463 |
2.7912 | 33.0 | 330 | 2.8521 |
2.7912 | 34.0 | 340 | 2.7665 |
2.8258 | 35.0 | 350 | 2.7878 |
2.8258 | 36.0 | 360 | 2.8995 |
2.8258 | 37.0 | 370 | 3.0310 |
2.8258 | 38.0 | 380 | 2.9792 |
2.8258 | 39.0 | 390 | 2.8650 |
2.908 | 40.0 | 400 | 2.8697 |
2.908 | 41.0 | 410 | 2.9299 |
2.908 | 42.0 | 420 | 2.7992 |
2.908 | 43.0 | 430 | 2.9172 |
2.908 | 44.0 | 440 | 2.8923 |
2.8984 | 45.0 | 450 | 2.8248 |
2.8984 | 46.0 | 460 | 2.9112 |
2.8984 | 47.0 | 470 | 2.8829 |
2.8984 | 48.0 | 480 | 2.8336 |
2.8984 | 49.0 | 490 | 2.7418 |
2.8658 | 50.0 | 500 | 2.7437 |
2.8658 | 51.0 | 510 | 2.7814 |
2.8658 | 52.0 | 520 | 2.8369 |
2.8658 | 53.0 | 530 | 2.8406 |
2.8658 | 54.0 | 540 | 2.8157 |
2.8376 | 55.0 | 550 | 2.9553 |
2.8376 | 56.0 | 560 | 2.7017 |
2.8376 | 57.0 | 570 | 2.8666 |
2.8376 | 58.0 | 580 | 2.7793 |
2.8376 | 59.0 | 590 | 2.9166 |
2.8294 | 60.0 | 600 | 2.7619 |
2.8294 | 61.0 | 610 | 2.9795 |
2.8294 | 62.0 | 620 | 2.7319 |
2.8294 | 63.0 | 630 | 2.9738 |
2.8294 | 64.0 | 640 | 2.8191 |
2.8127 | 65.0 | 650 | 2.8016 |
2.8127 | 66.0 | 660 | 3.0365 |
2.8127 | 67.0 | 670 | 2.7354 |
2.8127 | 68.0 | 680 | 3.0375 |
2.8127 | 69.0 | 690 | 2.6959 |
2.8177 | 70.0 | 700 | 3.0138 |
2.8177 | 71.0 | 710 | 2.8042 |
2.8177 | 72.0 | 720 | 2.8472 |
2.8177 | 73.0 | 730 | 3.0400 |
2.8177 | 74.0 | 740 | 2.7783 |
2.7711 | 75.0 | 750 | 2.8213 |
2.7711 | 76.0 | 760 | 2.7525 |
2.7711 | 77.0 | 770 | 2.8102 |
2.7711 | 78.0 | 780 | 3.0207 |
2.7711 | 79.0 | 790 | 2.9376 |
2.7756 | 80.0 | 800 | 2.9294 |
2.7756 | 81.0 | 810 | 3.0247 |
2.7756 | 82.0 | 820 | 2.9156 |
2.7756 | 83.0 | 830 | 2.9402 |
2.7756 | 84.0 | 840 | 2.7519 |
2.7855 | 85.0 | 850 | 2.8340 |
2.7855 | 86.0 | 860 | 2.8383 |
2.7855 | 87.0 | 870 | 2.8201 |
2.7855 | 88.0 | 880 | 3.0234 |
2.7855 | 89.0 | 890 | 2.8864 |
2.7698 | 90.0 | 900 | 2.8733 |
2.7698 | 91.0 | 910 | 2.9433 |
2.7698 | 92.0 | 920 | 2.7214 |
2.7698 | 93.0 | 930 | 2.9910 |
2.7698 | 94.0 | 940 | 2.6898 |
2.7683 | 95.0 | 950 | 2.9439 |
2.7683 | 96.0 | 960 | 2.9992 |
2.7683 | 97.0 | 970 | 3.0757 |
2.7683 | 98.0 | 980 | 3.0063 |
2.7683 | 99.0 | 990 | 3.0445 |
2.7727 | 100.0 | 1000 | 2.8396 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.7.0+cu126
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for mapra2025/msa_prot_t5_repr_seq
Base model
Rostlab/prot_t5_xl_uniref50