msa_prot_t5_repr_seq

This model is a fine-tuned version of Rostlab/prot_t5_xl_uniref50 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.8396

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss
No log 1.0 10 2.9787
No log 2.0 20 2.9960
No log 3.0 30 2.9192
No log 4.0 40 2.9534
3.0706 5.0 50 2.9662
3.0706 6.0 60 2.9160
3.0706 7.0 70 2.9198
3.0706 8.0 80 2.9258
3.0706 9.0 90 2.8992
2.9097 10.0 100 2.8073
2.9097 11.0 110 2.8701
2.9097 12.0 120 2.8366
2.9097 13.0 130 2.7131
2.9097 14.0 140 2.7704
2.8396 15.0 150 2.9375
2.8396 16.0 160 2.7965
2.8396 17.0 170 2.7563
2.8396 18.0 180 2.8374
2.8396 19.0 190 2.7491
2.8057 20.0 200 2.6914
2.8057 21.0 210 2.7746
2.8057 22.0 220 2.8187
2.8057 23.0 230 2.9719
2.8057 24.0 240 2.8489
2.8127 25.0 250 2.8719
2.8127 26.0 260 2.8749
2.8127 27.0 270 2.7897
2.8127 28.0 280 2.8159
2.8127 29.0 290 2.8765
2.7912 30.0 300 2.7582
2.7912 31.0 310 2.7970
2.7912 32.0 320 2.8463
2.7912 33.0 330 2.8521
2.7912 34.0 340 2.7665
2.8258 35.0 350 2.7878
2.8258 36.0 360 2.8995
2.8258 37.0 370 3.0310
2.8258 38.0 380 2.9792
2.8258 39.0 390 2.8650
2.908 40.0 400 2.8697
2.908 41.0 410 2.9299
2.908 42.0 420 2.7992
2.908 43.0 430 2.9172
2.908 44.0 440 2.8923
2.8984 45.0 450 2.8248
2.8984 46.0 460 2.9112
2.8984 47.0 470 2.8829
2.8984 48.0 480 2.8336
2.8984 49.0 490 2.7418
2.8658 50.0 500 2.7437
2.8658 51.0 510 2.7814
2.8658 52.0 520 2.8369
2.8658 53.0 530 2.8406
2.8658 54.0 540 2.8157
2.8376 55.0 550 2.9553
2.8376 56.0 560 2.7017
2.8376 57.0 570 2.8666
2.8376 58.0 580 2.7793
2.8376 59.0 590 2.9166
2.8294 60.0 600 2.7619
2.8294 61.0 610 2.9795
2.8294 62.0 620 2.7319
2.8294 63.0 630 2.9738
2.8294 64.0 640 2.8191
2.8127 65.0 650 2.8016
2.8127 66.0 660 3.0365
2.8127 67.0 670 2.7354
2.8127 68.0 680 3.0375
2.8127 69.0 690 2.6959
2.8177 70.0 700 3.0138
2.8177 71.0 710 2.8042
2.8177 72.0 720 2.8472
2.8177 73.0 730 3.0400
2.8177 74.0 740 2.7783
2.7711 75.0 750 2.8213
2.7711 76.0 760 2.7525
2.7711 77.0 770 2.8102
2.7711 78.0 780 3.0207
2.7711 79.0 790 2.9376
2.7756 80.0 800 2.9294
2.7756 81.0 810 3.0247
2.7756 82.0 820 2.9156
2.7756 83.0 830 2.9402
2.7756 84.0 840 2.7519
2.7855 85.0 850 2.8340
2.7855 86.0 860 2.8383
2.7855 87.0 870 2.8201
2.7855 88.0 880 3.0234
2.7855 89.0 890 2.8864
2.7698 90.0 900 2.8733
2.7698 91.0 910 2.9433
2.7698 92.0 920 2.7214
2.7698 93.0 930 2.9910
2.7698 94.0 940 2.6898
2.7683 95.0 950 2.9439
2.7683 96.0 960 2.9992
2.7683 97.0 970 3.0757
2.7683 98.0 980 3.0063
2.7683 99.0 990 3.0445
2.7727 100.0 1000 2.8396

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.7.0+cu126
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
2
Safetensors
Model size
2.82B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for mapra2025/msa_prot_t5_repr_seq

Finetuned
(11)
this model